ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  6p4e10 Unicode version

Theorem 6p4e10 9150
Description: 6 + 4 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.)
Assertion
Ref Expression
6p4e10  |-  ( 6  +  4 )  = ; 1
0

Proof of Theorem 6p4e10
StepHypRef Expression
1 df-4 8684 . . . 4  |-  4  =  ( 3  +  1 )
21oveq2i 5737 . . 3  |-  ( 6  +  4 )  =  ( 6  +  ( 3  +  1 ) )
3 6cn 8705 . . . 4  |-  6  e.  CC
4 3cn 8698 . . . 4  |-  3  e.  CC
5 ax-1cn 7631 . . . 4  |-  1  e.  CC
63, 4, 5addassi 7691 . . 3  |-  ( ( 6  +  3 )  +  1 )  =  ( 6  +  ( 3  +  1 ) )
72, 6eqtr4i 2136 . 2  |-  ( 6  +  4 )  =  ( ( 6  +  3 )  +  1 )
8 6p3e9 8767 . . 3  |-  ( 6  +  3 )  =  9
98oveq1i 5736 . 2  |-  ( ( 6  +  3 )  +  1 )  =  ( 9  +  1 )
10 9p1e10 9081 . 2  |-  ( 9  +  1 )  = ; 1
0
117, 9, 103eqtri 2137 1  |-  ( 6  +  4 )  = ; 1
0
Colors of variables: wff set class
Syntax hints:    = wceq 1312  (class class class)co 5726   0cc0 7540   1c1 7541    + caddc 7543   3c3 8675   4c4 8676   6c6 8678   9c9 8681  ;cdc 9079
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-cnex 7629  ax-resscn 7630  ax-1cn 7631  ax-1re 7632  ax-icn 7633  ax-addcl 7634  ax-addrcl 7635  ax-mulcl 7636  ax-mulcom 7639  ax-addass 7640  ax-mulass 7641  ax-distr 7642  ax-1rid 7645  ax-0id 7646  ax-cnre 7649
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-nf 1418  df-sb 1717  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ral 2393  df-rex 2394  df-rab 2397  df-v 2657  df-un 3039  df-in 3041  df-ss 3048  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-int 3736  df-br 3894  df-iota 5044  df-fv 5087  df-ov 5729  df-inn 8624  df-2 8682  df-3 8683  df-4 8684  df-5 8685  df-6 8686  df-7 8687  df-8 8688  df-9 8689  df-dec 9080
This theorem is referenced by:  6p5e11  9151  6t5e30  9185  ex-bc  12621
  Copyright terms: Public domain W3C validator