![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 6p4e10 | Unicode version |
Description: 6 + 4 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
6p4e10 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-4 8684 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | oveq2i 5737 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 6cn 8705 |
. . . 4
![]() ![]() ![]() ![]() | |
4 | 3cn 8698 |
. . . 4
![]() ![]() ![]() ![]() | |
5 | ax-1cn 7631 |
. . . 4
![]() ![]() ![]() ![]() | |
6 | 3, 4, 5 | addassi 7691 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 2, 6 | eqtr4i 2136 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 6p3e9 8767 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
9 | 8 | oveq1i 5736 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | 9p1e10 9081 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
11 | 7, 9, 10 | 3eqtri 2137 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-sep 4004 ax-cnex 7629 ax-resscn 7630 ax-1cn 7631 ax-1re 7632 ax-icn 7633 ax-addcl 7634 ax-addrcl 7635 ax-mulcl 7636 ax-mulcom 7639 ax-addass 7640 ax-mulass 7641 ax-distr 7642 ax-1rid 7645 ax-0id 7646 ax-cnre 7649 |
This theorem depends on definitions: df-bi 116 df-3an 945 df-tru 1315 df-nf 1418 df-sb 1717 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ral 2393 df-rex 2394 df-rab 2397 df-v 2657 df-un 3039 df-in 3041 df-ss 3048 df-sn 3497 df-pr 3498 df-op 3500 df-uni 3701 df-int 3736 df-br 3894 df-iota 5044 df-fv 5087 df-ov 5729 df-inn 8624 df-2 8682 df-3 8683 df-4 8684 df-5 8685 df-6 8686 df-7 8687 df-8 8688 df-9 8689 df-dec 9080 |
This theorem is referenced by: 6p5e11 9151 6t5e30 9185 ex-bc 12621 |
Copyright terms: Public domain | W3C validator |