| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 6t5e30 | Unicode version | ||
| Description: 6 times 5 equals 30. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| 6t5e30 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6nn0 9378 |
. 2
| |
| 2 | 4nn0 9376 |
. 2
| |
| 3 | df-5 9160 |
. 2
| |
| 4 | 6t4e24 9671 |
. 2
| |
| 5 | 2nn0 9374 |
. . 3
| |
| 6 | eqid 2229 |
. . 3
| |
| 7 | 2p1e3 9232 |
. . 3
| |
| 8 | 6cn 9180 |
. . . 4
| |
| 9 | 4cn 9176 |
. . . 4
| |
| 10 | 6p4e10 9637 |
. . . 4
| |
| 11 | 8, 9, 10 | addcomli 8279 |
. . 3
|
| 12 | 5, 2, 1, 6, 7, 11 | decaddci2 9627 |
. 2
|
| 13 | 1, 2, 3, 4, 12 | 4t3lem 9662 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-cnre 8098 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-iota 5274 df-fun 5316 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-sub 8307 df-inn 9099 df-2 9157 df-3 9158 df-4 9159 df-5 9160 df-6 9161 df-7 9162 df-8 9163 df-9 9164 df-n0 9358 df-dec 9567 |
| This theorem is referenced by: 6t6e36 9673 5recm6rec 9709 2exp16 12946 |
| Copyright terms: Public domain | W3C validator |