ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ex-bc Unicode version

Theorem ex-bc 13610
Description: Example for df-bc 10661. (Contributed by AV, 4-Sep-2021.)
Assertion
Ref Expression
ex-bc  |-  ( 5  _C  3 )  = ; 1
0

Proof of Theorem ex-bc
StepHypRef Expression
1 df-5 8919 . . 3  |-  5  =  ( 4  +  1 )
21oveq1i 5852 . 2  |-  ( 5  _C  3 )  =  ( ( 4  +  1 )  _C  3
)
3 4bc3eq4 10686 . . . 4  |-  ( 4  _C  3 )  =  4
4 3m1e2 8977 . . . . . 6  |-  ( 3  -  1 )  =  2
54oveq2i 5853 . . . . 5  |-  ( 4  _C  ( 3  -  1 ) )  =  ( 4  _C  2
)
6 4bc2eq6 10687 . . . . 5  |-  ( 4  _C  2 )  =  6
75, 6eqtri 2186 . . . 4  |-  ( 4  _C  ( 3  -  1 ) )  =  6
83, 7oveq12i 5854 . . 3  |-  ( ( 4  _C  3 )  +  ( 4  _C  ( 3  -  1 ) ) )  =  ( 4  +  6 )
9 4nn0 9133 . . . 4  |-  4  e.  NN0
10 3z 9220 . . . 4  |-  3  e.  ZZ
11 bcpasc 10679 . . . 4  |-  ( ( 4  e.  NN0  /\  3  e.  ZZ )  ->  ( ( 4  _C  3 )  +  ( 4  _C  ( 3  -  1 ) ) )  =  ( ( 4  +  1 )  _C  3 ) )
129, 10, 11mp2an 423 . . 3  |-  ( ( 4  _C  3 )  +  ( 4  _C  ( 3  -  1 ) ) )  =  ( ( 4  +  1 )  _C  3
)
13 6cn 8939 . . . 4  |-  6  e.  CC
14 4cn 8935 . . . 4  |-  4  e.  CC
15 6p4e10 9393 . . . 4  |-  ( 6  +  4 )  = ; 1
0
1613, 14, 15addcomli 8043 . . 3  |-  ( 4  +  6 )  = ; 1
0
178, 12, 163eqtr3i 2194 . 2  |-  ( ( 4  +  1 )  _C  3 )  = ; 1
0
182, 17eqtri 2186 1  |-  ( 5  _C  3 )  = ; 1
0
Colors of variables: wff set class
Syntax hints:    = wceq 1343    e. wcel 2136  (class class class)co 5842   0cc0 7753   1c1 7754    + caddc 7756    - cmin 8069   2c2 8908   3c3 8909   4c4 8910   5c5 8911   6c6 8912   NN0cn0 9114   ZZcz 9191  ;cdc 9322    _C cbc 10660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-5 8919  df-6 8920  df-7 8921  df-8 8922  df-9 8923  df-n0 9115  df-z 9192  df-dec 9323  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-seqfrec 10381  df-fac 10639  df-bc 10661
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator