ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ex-bc Unicode version

Theorem ex-bc 14341
Description: Example for df-bc 10721. (Contributed by AV, 4-Sep-2021.)
Assertion
Ref Expression
ex-bc  |-  ( 5  _C  3 )  = ; 1
0

Proof of Theorem ex-bc
StepHypRef Expression
1 df-5 8977 . . 3  |-  5  =  ( 4  +  1 )
21oveq1i 5882 . 2  |-  ( 5  _C  3 )  =  ( ( 4  +  1 )  _C  3
)
3 4bc3eq4 10746 . . . 4  |-  ( 4  _C  3 )  =  4
4 3m1e2 9035 . . . . . 6  |-  ( 3  -  1 )  =  2
54oveq2i 5883 . . . . 5  |-  ( 4  _C  ( 3  -  1 ) )  =  ( 4  _C  2
)
6 4bc2eq6 10747 . . . . 5  |-  ( 4  _C  2 )  =  6
75, 6eqtri 2198 . . . 4  |-  ( 4  _C  ( 3  -  1 ) )  =  6
83, 7oveq12i 5884 . . 3  |-  ( ( 4  _C  3 )  +  ( 4  _C  ( 3  -  1 ) ) )  =  ( 4  +  6 )
9 4nn0 9191 . . . 4  |-  4  e.  NN0
10 3z 9278 . . . 4  |-  3  e.  ZZ
11 bcpasc 10739 . . . 4  |-  ( ( 4  e.  NN0  /\  3  e.  ZZ )  ->  ( ( 4  _C  3 )  +  ( 4  _C  ( 3  -  1 ) ) )  =  ( ( 4  +  1 )  _C  3 ) )
129, 10, 11mp2an 426 . . 3  |-  ( ( 4  _C  3 )  +  ( 4  _C  ( 3  -  1 ) ) )  =  ( ( 4  +  1 )  _C  3
)
13 6cn 8997 . . . 4  |-  6  e.  CC
14 4cn 8993 . . . 4  |-  4  e.  CC
15 6p4e10 9451 . . . 4  |-  ( 6  +  4 )  = ; 1
0
1613, 14, 15addcomli 8098 . . 3  |-  ( 4  +  6 )  = ; 1
0
178, 12, 163eqtr3i 2206 . 2  |-  ( ( 4  +  1 )  _C  3 )  = ; 1
0
182, 17eqtri 2198 1  |-  ( 5  _C  3 )  = ; 1
0
Colors of variables: wff set class
Syntax hints:    = wceq 1353    e. wcel 2148  (class class class)co 5872   0cc0 7808   1c1 7809    + caddc 7811    - cmin 8124   2c2 8966   3c3 8967   4c4 8968   5c5 8969   6c6 8970   NN0cn0 9172   ZZcz 9249  ;cdc 9380    _C cbc 10720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4117  ax-sep 4120  ax-nul 4128  ax-pow 4173  ax-pr 4208  ax-un 4432  ax-setind 4535  ax-iinf 4586  ax-cnex 7899  ax-resscn 7900  ax-1cn 7901  ax-1re 7902  ax-icn 7903  ax-addcl 7904  ax-addrcl 7905  ax-mulcl 7906  ax-mulrcl 7907  ax-addcom 7908  ax-mulcom 7909  ax-addass 7910  ax-mulass 7911  ax-distr 7912  ax-i2m1 7913  ax-0lt1 7914  ax-1rid 7915  ax-0id 7916  ax-rnegex 7917  ax-precex 7918  ax-cnre 7919  ax-pre-ltirr 7920  ax-pre-ltwlin 7921  ax-pre-lttrn 7922  ax-pre-apti 7923  ax-pre-ltadd 7924  ax-pre-mulgt0 7925  ax-pre-mulext 7926
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4003  df-opab 4064  df-mpt 4065  df-tr 4101  df-id 4292  df-po 4295  df-iso 4296  df-iord 4365  df-on 4367  df-ilim 4368  df-suc 4370  df-iom 4589  df-xp 4631  df-rel 4632  df-cnv 4633  df-co 4634  df-dm 4635  df-rn 4636  df-res 4637  df-ima 4638  df-iota 5177  df-fun 5217  df-fn 5218  df-f 5219  df-f1 5220  df-fo 5221  df-f1o 5222  df-fv 5223  df-riota 5828  df-ov 5875  df-oprab 5876  df-mpo 5877  df-1st 6138  df-2nd 6139  df-recs 6303  df-frec 6389  df-pnf 7990  df-mnf 7991  df-xr 7992  df-ltxr 7993  df-le 7994  df-sub 8126  df-neg 8127  df-reap 8528  df-ap 8535  df-div 8626  df-inn 8916  df-2 8974  df-3 8975  df-4 8976  df-5 8977  df-6 8978  df-7 8979  df-8 8980  df-9 8981  df-n0 9173  df-z 9250  df-dec 9381  df-uz 9525  df-q 9616  df-rp 9650  df-fz 10005  df-seqfrec 10441  df-fac 10699  df-bc 10721
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator