ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ex-bc Unicode version

Theorem ex-bc 13764
Description: Example for df-bc 10682. (Contributed by AV, 4-Sep-2021.)
Assertion
Ref Expression
ex-bc  |-  ( 5  _C  3 )  = ; 1
0

Proof of Theorem ex-bc
StepHypRef Expression
1 df-5 8940 . . 3  |-  5  =  ( 4  +  1 )
21oveq1i 5863 . 2  |-  ( 5  _C  3 )  =  ( ( 4  +  1 )  _C  3
)
3 4bc3eq4 10707 . . . 4  |-  ( 4  _C  3 )  =  4
4 3m1e2 8998 . . . . . 6  |-  ( 3  -  1 )  =  2
54oveq2i 5864 . . . . 5  |-  ( 4  _C  ( 3  -  1 ) )  =  ( 4  _C  2
)
6 4bc2eq6 10708 . . . . 5  |-  ( 4  _C  2 )  =  6
75, 6eqtri 2191 . . . 4  |-  ( 4  _C  ( 3  -  1 ) )  =  6
83, 7oveq12i 5865 . . 3  |-  ( ( 4  _C  3 )  +  ( 4  _C  ( 3  -  1 ) ) )  =  ( 4  +  6 )
9 4nn0 9154 . . . 4  |-  4  e.  NN0
10 3z 9241 . . . 4  |-  3  e.  ZZ
11 bcpasc 10700 . . . 4  |-  ( ( 4  e.  NN0  /\  3  e.  ZZ )  ->  ( ( 4  _C  3 )  +  ( 4  _C  ( 3  -  1 ) ) )  =  ( ( 4  +  1 )  _C  3 ) )
129, 10, 11mp2an 424 . . 3  |-  ( ( 4  _C  3 )  +  ( 4  _C  ( 3  -  1 ) ) )  =  ( ( 4  +  1 )  _C  3
)
13 6cn 8960 . . . 4  |-  6  e.  CC
14 4cn 8956 . . . 4  |-  4  e.  CC
15 6p4e10 9414 . . . 4  |-  ( 6  +  4 )  = ; 1
0
1613, 14, 15addcomli 8064 . . 3  |-  ( 4  +  6 )  = ; 1
0
178, 12, 163eqtr3i 2199 . 2  |-  ( ( 4  +  1 )  _C  3 )  = ; 1
0
182, 17eqtri 2191 1  |-  ( 5  _C  3 )  = ; 1
0
Colors of variables: wff set class
Syntax hints:    = wceq 1348    e. wcel 2141  (class class class)co 5853   0cc0 7774   1c1 7775    + caddc 7777    - cmin 8090   2c2 8929   3c3 8930   4c4 8931   5c5 8932   6c6 8933   NN0cn0 9135   ZZcz 9212  ;cdc 9343    _C cbc 10681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-5 8940  df-6 8941  df-7 8942  df-8 8943  df-9 8944  df-n0 9136  df-z 9213  df-dec 9344  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-seqfrec 10402  df-fac 10660  df-bc 10682
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator