| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cos01bnd | Unicode version | ||
| Description: Bounds on the cosine of a positive real number less than or equal to 1. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| Ref | Expression |
|---|---|
| cos01bnd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr 8139 |
. . . . . . . . 9
| |
| 2 | 1re 8091 |
. . . . . . . . 9
| |
| 3 | elioc2 10078 |
. . . . . . . . 9
| |
| 4 | 1, 2, 3 | mp2an 426 |
. . . . . . . 8
|
| 5 | 4 | simp1bi 1015 |
. . . . . . 7
|
| 6 | eqid 2206 |
. . . . . . . 8
| |
| 7 | 6 | recos4p 12105 |
. . . . . . 7
|
| 8 | 5, 7 | syl 14 |
. . . . . 6
|
| 9 | 8 | eqcomd 2212 |
. . . . 5
|
| 10 | 5 | recoscld 12110 |
. . . . . . 7
|
| 11 | 10 | recnd 8121 |
. . . . . 6
|
| 12 | 5 | resqcld 10866 |
. . . . . . . . 9
|
| 13 | 12 | rehalfcld 9304 |
. . . . . . . 8
|
| 14 | resubcl 8356 |
. . . . . . . 8
| |
| 15 | 2, 13, 14 | sylancr 414 |
. . . . . . 7
|
| 16 | 15 | recnd 8121 |
. . . . . 6
|
| 17 | ax-icn 8040 |
. . . . . . . . . 10
| |
| 18 | 5 | recnd 8121 |
. . . . . . . . . 10
|
| 19 | mulcl 8072 |
. . . . . . . . . 10
| |
| 20 | 17, 18, 19 | sylancr 414 |
. . . . . . . . 9
|
| 21 | 4nn0 9334 |
. . . . . . . . 9
| |
| 22 | 6 | eftlcl 12074 |
. . . . . . . . 9
|
| 23 | 20, 21, 22 | sylancl 413 |
. . . . . . . 8
|
| 24 | 23 | recld 11324 |
. . . . . . 7
|
| 25 | 24 | recnd 8121 |
. . . . . 6
|
| 26 | 11, 16, 25 | subaddd 8421 |
. . . . 5
|
| 27 | 9, 26 | mpbird 167 |
. . . 4
|
| 28 | 27 | fveq2d 5593 |
. . 3
|
| 29 | 25 | abscld 11567 |
. . . 4
|
| 30 | 23 | abscld 11567 |
. . . 4
|
| 31 | 6nn 9222 |
. . . . 5
| |
| 32 | nndivre 9092 |
. . . . 5
| |
| 33 | 12, 31, 32 | sylancl 413 |
. . . 4
|
| 34 | absrele 11469 |
. . . . 5
| |
| 35 | 23, 34 | syl 14 |
. . . 4
|
| 36 | reexpcl 10723 |
. . . . . . 7
| |
| 37 | 5, 21, 36 | sylancl 413 |
. . . . . 6
|
| 38 | nndivre 9092 |
. . . . . 6
| |
| 39 | 37, 31, 38 | sylancl 413 |
. . . . 5
|
| 40 | 6 | ef01bndlem 12142 |
. . . . 5
|
| 41 | 2nn0 9332 |
. . . . . . . 8
| |
| 42 | 41 | a1i 9 |
. . . . . . 7
|
| 43 | 4z 9422 |
. . . . . . . . 9
| |
| 44 | 2re 9126 |
. . . . . . . . . 10
| |
| 45 | 4re 9133 |
. . . . . . . . . 10
| |
| 46 | 2lt4 9230 |
. . . . . . . . . 10
| |
| 47 | 44, 45, 46 | ltleii 8195 |
. . . . . . . . 9
|
| 48 | 2z 9420 |
. . . . . . . . . 10
| |
| 49 | 48 | eluz1i 9675 |
. . . . . . . . 9
|
| 50 | 43, 47, 49 | mpbir2an 945 |
. . . . . . . 8
|
| 51 | 50 | a1i 9 |
. . . . . . 7
|
| 52 | 4 | simp2bi 1016 |
. . . . . . . 8
|
| 53 | 0re 8092 |
. . . . . . . . 9
| |
| 54 | ltle 8180 |
. . . . . . . . 9
| |
| 55 | 53, 5, 54 | sylancr 414 |
. . . . . . . 8
|
| 56 | 52, 55 | mpd 13 |
. . . . . . 7
|
| 57 | 4 | simp3bi 1017 |
. . . . . . 7
|
| 58 | 5, 42, 51, 56, 57 | leexp2rd 10870 |
. . . . . 6
|
| 59 | 6re 9137 |
. . . . . . . 8
| |
| 60 | 59 | a1i 9 |
. . . . . . 7
|
| 61 | 6pos 9157 |
. . . . . . . 8
| |
| 62 | 61 | a1i 9 |
. . . . . . 7
|
| 63 | lediv1 8962 |
. . . . . . 7
| |
| 64 | 37, 12, 60, 62, 63 | syl112anc 1254 |
. . . . . 6
|
| 65 | 58, 64 | mpbid 147 |
. . . . 5
|
| 66 | 30, 39, 33, 40, 65 | ltletrd 8516 |
. . . 4
|
| 67 | 29, 30, 33, 35, 66 | lelttrd 8217 |
. . 3
|
| 68 | 28, 67 | eqbrtrd 4073 |
. 2
|
| 69 | 10, 15, 33 | absdifltd 11564 |
. . 3
|
| 70 | 1cnd 8108 |
. . . . . . 7
| |
| 71 | 13 | recnd 8121 |
. . . . . . 7
|
| 72 | 33 | recnd 8121 |
. . . . . . 7
|
| 73 | 70, 71, 72 | subsub4d 8434 |
. . . . . 6
|
| 74 | halfpm6th 9277 |
. . . . . . . . . . 11
| |
| 75 | 74 | simpri 113 |
. . . . . . . . . 10
|
| 76 | 75 | oveq2i 5968 |
. . . . . . . . 9
|
| 77 | 12 | recnd 8121 |
. . . . . . . . . 10
|
| 78 | 2cn 9127 |
. . . . . . . . . . . 12
| |
| 79 | 2ap0 9149 |
. . . . . . . . . . . 12
| |
| 80 | 78, 79 | recclapi 8835 |
. . . . . . . . . . 11
|
| 81 | 6cn 9138 |
. . . . . . . . . . . 12
| |
| 82 | 31 | nnap0i 9087 |
. . . . . . . . . . . 12
|
| 83 | 81, 82 | recclapi 8835 |
. . . . . . . . . . 11
|
| 84 | adddi 8077 |
. . . . . . . . . . 11
| |
| 85 | 80, 83, 84 | mp3an23 1342 |
. . . . . . . . . 10
|
| 86 | 77, 85 | syl 14 |
. . . . . . . . 9
|
| 87 | 76, 86 | eqtr3id 2253 |
. . . . . . . 8
|
| 88 | 3cn 9131 |
. . . . . . . . . . 11
| |
| 89 | 3ap0 9152 |
. . . . . . . . . . 11
| |
| 90 | 88, 89 | pm3.2i 272 |
. . . . . . . . . 10
|
| 91 | div12ap 8787 |
. . . . . . . . . 10
| |
| 92 | 78, 90, 91 | mp3an13 1341 |
. . . . . . . . 9
|
| 93 | 77, 92 | syl 14 |
. . . . . . . 8
|
| 94 | divrecap 8781 |
. . . . . . . . . . 11
| |
| 95 | 78, 79, 94 | mp3an23 1342 |
. . . . . . . . . 10
|
| 96 | 77, 95 | syl 14 |
. . . . . . . . 9
|
| 97 | divrecap 8781 |
. . . . . . . . . . 11
| |
| 98 | 81, 82, 97 | mp3an23 1342 |
. . . . . . . . . 10
|
| 99 | 77, 98 | syl 14 |
. . . . . . . . 9
|
| 100 | 96, 99 | oveq12d 5975 |
. . . . . . . 8
|
| 101 | 87, 93, 100 | 3eqtr4rd 2250 |
. . . . . . 7
|
| 102 | 101 | oveq2d 5973 |
. . . . . 6
|
| 103 | 73, 102 | eqtrd 2239 |
. . . . 5
|
| 104 | 103 | breq1d 4061 |
. . . 4
|
| 105 | 70, 71, 72 | subsubd 8431 |
. . . . . 6
|
| 106 | 74 | simpli 111 |
. . . . . . . . . 10
|
| 107 | 106 | oveq2i 5968 |
. . . . . . . . 9
|
| 108 | subdi 8477 |
. . . . . . . . . . 11
| |
| 109 | 80, 83, 108 | mp3an23 1342 |
. . . . . . . . . 10
|
| 110 | 77, 109 | syl 14 |
. . . . . . . . 9
|
| 111 | 107, 110 | eqtr3id 2253 |
. . . . . . . 8
|
| 112 | divrecap 8781 |
. . . . . . . . . 10
| |
| 113 | 88, 89, 112 | mp3an23 1342 |
. . . . . . . . 9
|
| 114 | 77, 113 | syl 14 |
. . . . . . . 8
|
| 115 | 96, 99 | oveq12d 5975 |
. . . . . . . 8
|
| 116 | 111, 114, 115 | 3eqtr4rd 2250 |
. . . . . . 7
|
| 117 | 116 | oveq2d 5973 |
. . . . . 6
|
| 118 | 105, 117 | eqtr3d 2241 |
. . . . 5
|
| 119 | 118 | breq2d 4063 |
. . . 4
|
| 120 | 104, 119 | anbi12d 473 |
. . 3
|
| 121 | 69, 120 | bitrd 188 |
. 2
|
| 122 | 68, 121 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-mulrcl 8044 ax-addcom 8045 ax-mulcom 8046 ax-addass 8047 ax-mulass 8048 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-1rid 8052 ax-0id 8053 ax-rnegex 8054 ax-precex 8055 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-apti 8060 ax-pre-ltadd 8061 ax-pre-mulgt0 8062 ax-pre-mulext 8063 ax-arch 8064 ax-caucvg 8065 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-po 4351 df-iso 4352 df-iord 4421 df-on 4423 df-ilim 4424 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-isom 5289 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-recs 6404 df-irdg 6469 df-frec 6490 df-1o 6515 df-oadd 6519 df-er 6633 df-en 6841 df-dom 6842 df-fin 6843 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-reap 8668 df-ap 8675 df-div 8766 df-inn 9057 df-2 9115 df-3 9116 df-4 9117 df-5 9118 df-6 9119 df-7 9120 df-8 9121 df-n0 9316 df-z 9393 df-uz 9669 df-q 9761 df-rp 9796 df-ioc 10035 df-ico 10036 df-fz 10151 df-fzo 10285 df-seqfrec 10615 df-exp 10706 df-fac 10893 df-ihash 10943 df-shft 11201 df-cj 11228 df-re 11229 df-im 11230 df-rsqrt 11384 df-abs 11385 df-clim 11665 df-sumdc 11740 df-ef 12034 df-cos 12037 |
| This theorem is referenced by: cos1bnd 12145 cos01gt0 12149 tangtx 15385 |
| Copyright terms: Public domain | W3C validator |