| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cos01bnd | Unicode version | ||
| Description: Bounds on the cosine of a positive real number less than or equal to 1. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| Ref | Expression |
|---|---|
| cos01bnd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr 8101 |
. . . . . . . . 9
| |
| 2 | 1re 8053 |
. . . . . . . . 9
| |
| 3 | elioc2 10040 |
. . . . . . . . 9
| |
| 4 | 1, 2, 3 | mp2an 426 |
. . . . . . . 8
|
| 5 | 4 | simp1bi 1014 |
. . . . . . 7
|
| 6 | eqid 2204 |
. . . . . . . 8
| |
| 7 | 6 | recos4p 11949 |
. . . . . . 7
|
| 8 | 5, 7 | syl 14 |
. . . . . 6
|
| 9 | 8 | eqcomd 2210 |
. . . . 5
|
| 10 | 5 | recoscld 11954 |
. . . . . . 7
|
| 11 | 10 | recnd 8083 |
. . . . . 6
|
| 12 | 5 | resqcld 10825 |
. . . . . . . . 9
|
| 13 | 12 | rehalfcld 9266 |
. . . . . . . 8
|
| 14 | resubcl 8318 |
. . . . . . . 8
| |
| 15 | 2, 13, 14 | sylancr 414 |
. . . . . . 7
|
| 16 | 15 | recnd 8083 |
. . . . . 6
|
| 17 | ax-icn 8002 |
. . . . . . . . . 10
| |
| 18 | 5 | recnd 8083 |
. . . . . . . . . 10
|
| 19 | mulcl 8034 |
. . . . . . . . . 10
| |
| 20 | 17, 18, 19 | sylancr 414 |
. . . . . . . . 9
|
| 21 | 4nn0 9296 |
. . . . . . . . 9
| |
| 22 | 6 | eftlcl 11918 |
. . . . . . . . 9
|
| 23 | 20, 21, 22 | sylancl 413 |
. . . . . . . 8
|
| 24 | 23 | recld 11168 |
. . . . . . 7
|
| 25 | 24 | recnd 8083 |
. . . . . 6
|
| 26 | 11, 16, 25 | subaddd 8383 |
. . . . 5
|
| 27 | 9, 26 | mpbird 167 |
. . . 4
|
| 28 | 27 | fveq2d 5574 |
. . 3
|
| 29 | 25 | abscld 11411 |
. . . 4
|
| 30 | 23 | abscld 11411 |
. . . 4
|
| 31 | 6nn 9184 |
. . . . 5
| |
| 32 | nndivre 9054 |
. . . . 5
| |
| 33 | 12, 31, 32 | sylancl 413 |
. . . 4
|
| 34 | absrele 11313 |
. . . . 5
| |
| 35 | 23, 34 | syl 14 |
. . . 4
|
| 36 | reexpcl 10682 |
. . . . . . 7
| |
| 37 | 5, 21, 36 | sylancl 413 |
. . . . . 6
|
| 38 | nndivre 9054 |
. . . . . 6
| |
| 39 | 37, 31, 38 | sylancl 413 |
. . . . 5
|
| 40 | 6 | ef01bndlem 11986 |
. . . . 5
|
| 41 | 2nn0 9294 |
. . . . . . . 8
| |
| 42 | 41 | a1i 9 |
. . . . . . 7
|
| 43 | 4z 9384 |
. . . . . . . . 9
| |
| 44 | 2re 9088 |
. . . . . . . . . 10
| |
| 45 | 4re 9095 |
. . . . . . . . . 10
| |
| 46 | 2lt4 9192 |
. . . . . . . . . 10
| |
| 47 | 44, 45, 46 | ltleii 8157 |
. . . . . . . . 9
|
| 48 | 2z 9382 |
. . . . . . . . . 10
| |
| 49 | 48 | eluz1i 9637 |
. . . . . . . . 9
|
| 50 | 43, 47, 49 | mpbir2an 944 |
. . . . . . . 8
|
| 51 | 50 | a1i 9 |
. . . . . . 7
|
| 52 | 4 | simp2bi 1015 |
. . . . . . . 8
|
| 53 | 0re 8054 |
. . . . . . . . 9
| |
| 54 | ltle 8142 |
. . . . . . . . 9
| |
| 55 | 53, 5, 54 | sylancr 414 |
. . . . . . . 8
|
| 56 | 52, 55 | mpd 13 |
. . . . . . 7
|
| 57 | 4 | simp3bi 1016 |
. . . . . . 7
|
| 58 | 5, 42, 51, 56, 57 | leexp2rd 10829 |
. . . . . 6
|
| 59 | 6re 9099 |
. . . . . . . 8
| |
| 60 | 59 | a1i 9 |
. . . . . . 7
|
| 61 | 6pos 9119 |
. . . . . . . 8
| |
| 62 | 61 | a1i 9 |
. . . . . . 7
|
| 63 | lediv1 8924 |
. . . . . . 7
| |
| 64 | 37, 12, 60, 62, 63 | syl112anc 1253 |
. . . . . 6
|
| 65 | 58, 64 | mpbid 147 |
. . . . 5
|
| 66 | 30, 39, 33, 40, 65 | ltletrd 8478 |
. . . 4
|
| 67 | 29, 30, 33, 35, 66 | lelttrd 8179 |
. . 3
|
| 68 | 28, 67 | eqbrtrd 4065 |
. 2
|
| 69 | 10, 15, 33 | absdifltd 11408 |
. . 3
|
| 70 | 1cnd 8070 |
. . . . . . 7
| |
| 71 | 13 | recnd 8083 |
. . . . . . 7
|
| 72 | 33 | recnd 8083 |
. . . . . . 7
|
| 73 | 70, 71, 72 | subsub4d 8396 |
. . . . . 6
|
| 74 | halfpm6th 9239 |
. . . . . . . . . . 11
| |
| 75 | 74 | simpri 113 |
. . . . . . . . . 10
|
| 76 | 75 | oveq2i 5945 |
. . . . . . . . 9
|
| 77 | 12 | recnd 8083 |
. . . . . . . . . 10
|
| 78 | 2cn 9089 |
. . . . . . . . . . . 12
| |
| 79 | 2ap0 9111 |
. . . . . . . . . . . 12
| |
| 80 | 78, 79 | recclapi 8797 |
. . . . . . . . . . 11
|
| 81 | 6cn 9100 |
. . . . . . . . . . . 12
| |
| 82 | 31 | nnap0i 9049 |
. . . . . . . . . . . 12
|
| 83 | 81, 82 | recclapi 8797 |
. . . . . . . . . . 11
|
| 84 | adddi 8039 |
. . . . . . . . . . 11
| |
| 85 | 80, 83, 84 | mp3an23 1341 |
. . . . . . . . . 10
|
| 86 | 77, 85 | syl 14 |
. . . . . . . . 9
|
| 87 | 76, 86 | eqtr3id 2251 |
. . . . . . . 8
|
| 88 | 3cn 9093 |
. . . . . . . . . . 11
| |
| 89 | 3ap0 9114 |
. . . . . . . . . . 11
| |
| 90 | 88, 89 | pm3.2i 272 |
. . . . . . . . . 10
|
| 91 | div12ap 8749 |
. . . . . . . . . 10
| |
| 92 | 78, 90, 91 | mp3an13 1340 |
. . . . . . . . 9
|
| 93 | 77, 92 | syl 14 |
. . . . . . . 8
|
| 94 | divrecap 8743 |
. . . . . . . . . . 11
| |
| 95 | 78, 79, 94 | mp3an23 1341 |
. . . . . . . . . 10
|
| 96 | 77, 95 | syl 14 |
. . . . . . . . 9
|
| 97 | divrecap 8743 |
. . . . . . . . . . 11
| |
| 98 | 81, 82, 97 | mp3an23 1341 |
. . . . . . . . . 10
|
| 99 | 77, 98 | syl 14 |
. . . . . . . . 9
|
| 100 | 96, 99 | oveq12d 5952 |
. . . . . . . 8
|
| 101 | 87, 93, 100 | 3eqtr4rd 2248 |
. . . . . . 7
|
| 102 | 101 | oveq2d 5950 |
. . . . . 6
|
| 103 | 73, 102 | eqtrd 2237 |
. . . . 5
|
| 104 | 103 | breq1d 4053 |
. . . 4
|
| 105 | 70, 71, 72 | subsubd 8393 |
. . . . . 6
|
| 106 | 74 | simpli 111 |
. . . . . . . . . 10
|
| 107 | 106 | oveq2i 5945 |
. . . . . . . . 9
|
| 108 | subdi 8439 |
. . . . . . . . . . 11
| |
| 109 | 80, 83, 108 | mp3an23 1341 |
. . . . . . . . . 10
|
| 110 | 77, 109 | syl 14 |
. . . . . . . . 9
|
| 111 | 107, 110 | eqtr3id 2251 |
. . . . . . . 8
|
| 112 | divrecap 8743 |
. . . . . . . . . 10
| |
| 113 | 88, 89, 112 | mp3an23 1341 |
. . . . . . . . 9
|
| 114 | 77, 113 | syl 14 |
. . . . . . . 8
|
| 115 | 96, 99 | oveq12d 5952 |
. . . . . . . 8
|
| 116 | 111, 114, 115 | 3eqtr4rd 2248 |
. . . . . . 7
|
| 117 | 116 | oveq2d 5950 |
. . . . . 6
|
| 118 | 105, 117 | eqtr3d 2239 |
. . . . 5
|
| 119 | 118 | breq2d 4055 |
. . . 4
|
| 120 | 104, 119 | anbi12d 473 |
. . 3
|
| 121 | 69, 120 | bitrd 188 |
. 2
|
| 122 | 68, 121 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-iinf 4634 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-mulrcl 8006 ax-addcom 8007 ax-mulcom 8008 ax-addass 8009 ax-mulass 8010 ax-distr 8011 ax-i2m1 8012 ax-0lt1 8013 ax-1rid 8014 ax-0id 8015 ax-rnegex 8016 ax-precex 8017 ax-cnre 8018 ax-pre-ltirr 8019 ax-pre-ltwlin 8020 ax-pre-lttrn 8021 ax-pre-apti 8022 ax-pre-ltadd 8023 ax-pre-mulgt0 8024 ax-pre-mulext 8025 ax-arch 8026 ax-caucvg 8027 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4338 df-po 4341 df-iso 4342 df-iord 4411 df-on 4413 df-ilim 4414 df-suc 4416 df-iom 4637 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-fv 5276 df-isom 5277 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-1st 6216 df-2nd 6217 df-recs 6381 df-irdg 6446 df-frec 6467 df-1o 6492 df-oadd 6496 df-er 6610 df-en 6818 df-dom 6819 df-fin 6820 df-pnf 8091 df-mnf 8092 df-xr 8093 df-ltxr 8094 df-le 8095 df-sub 8227 df-neg 8228 df-reap 8630 df-ap 8637 df-div 8728 df-inn 9019 df-2 9077 df-3 9078 df-4 9079 df-5 9080 df-6 9081 df-7 9082 df-8 9083 df-n0 9278 df-z 9355 df-uz 9631 df-q 9723 df-rp 9758 df-ioc 9997 df-ico 9998 df-fz 10113 df-fzo 10247 df-seqfrec 10574 df-exp 10665 df-fac 10852 df-ihash 10902 df-shft 11045 df-cj 11072 df-re 11073 df-im 11074 df-rsqrt 11228 df-abs 11229 df-clim 11509 df-sumdc 11584 df-ef 11878 df-cos 11881 |
| This theorem is referenced by: cos1bnd 11989 cos01gt0 11993 tangtx 15228 |
| Copyright terms: Public domain | W3C validator |