ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cos01bnd Unicode version

Theorem cos01bnd 11110
Description: Bounds on the cosine of a positive real number less than or equal to 1. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
Assertion
Ref Expression
cos01bnd  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( 1  -  (
2  x.  ( ( A ^ 2 )  /  3 ) ) )  <  ( cos `  A )  /\  ( cos `  A )  < 
( 1  -  (
( A ^ 2 )  /  3 ) ) ) )

Proof of Theorem cos01bnd
Dummy variables  k  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0xr 7595 . . . . . . . . 9  |-  0  e.  RR*
2 1re 7548 . . . . . . . . 9  |-  1  e.  RR
3 elioc2 9415 . . . . . . . . 9  |-  ( ( 0  e.  RR*  /\  1  e.  RR )  ->  ( A  e.  ( 0 (,] 1 )  <->  ( A  e.  RR  /\  0  < 
A  /\  A  <_  1 ) ) )
41, 2, 3mp2an 418 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  <->  ( A  e.  RR  /\  0  < 
A  /\  A  <_  1 ) )
54simp1bi 959 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  A  e.  RR )
6 eqid 2089 . . . . . . . 8  |-  ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) )  =  ( n  e. 
NN0  |->  ( ( ( _i  x.  A ) ^ n )  / 
( ! `  n
) ) )
76recos4p 11071 . . . . . . 7  |-  ( A  e.  RR  ->  ( cos `  A )  =  ( ( 1  -  ( ( A ^
2 )  /  2
) )  +  ( Re `  sum_ k  e.  ( ZZ>= `  4 )
( ( n  e. 
NN0  |->  ( ( ( _i  x.  A ) ^ n )  / 
( ! `  n
) ) ) `  k ) ) ) )
85, 7syl 14 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  ( cos `  A )  =  ( ( 1  -  ( ( A ^
2 )  /  2
) )  +  ( Re `  sum_ k  e.  ( ZZ>= `  4 )
( ( n  e. 
NN0  |->  ( ( ( _i  x.  A ) ^ n )  / 
( ! `  n
) ) ) `  k ) ) ) )
98eqcomd 2094 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( 1  -  (
( A ^ 2 )  /  2 ) )  +  ( Re
`  sum_ k  e.  (
ZZ>= `  4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) ) `  k
) ) )  =  ( cos `  A
) )
105recoscld 11076 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  ( cos `  A )  e.  RR )
1110recnd 7577 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  ( cos `  A )  e.  CC )
125resqcld 10173 . . . . . . . . 9  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 2 )  e.  RR )
1312rehalfcld 8723 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 2 )  /  2 )  e.  RR )
14 resubcl 7807 . . . . . . . 8  |-  ( ( 1  e.  RR  /\  ( ( A ^
2 )  /  2
)  e.  RR )  ->  ( 1  -  ( ( A ^
2 )  /  2
) )  e.  RR )
152, 13, 14sylancr 406 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  (
1  -  ( ( A ^ 2 )  /  2 ) )  e.  RR )
1615recnd 7577 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  (
1  -  ( ( A ^ 2 )  /  2 ) )  e.  CC )
17 ax-icn 7501 . . . . . . . . . 10  |-  _i  e.  CC
185recnd 7577 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,] 1 )  ->  A  e.  CC )
19 mulcl 7530 . . . . . . . . . 10  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
2017, 18, 19sylancr 406 . . . . . . . . 9  |-  ( A  e.  ( 0 (,] 1 )  ->  (
_i  x.  A )  e.  CC )
21 4nn0 8753 . . . . . . . . 9  |-  4  e.  NN0
226eftlcl 11039 . . . . . . . . 9  |-  ( ( ( _i  x.  A
)  e.  CC  /\  4  e.  NN0 )  ->  sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k )  e.  CC )
2320, 21, 22sylancl 405 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  sum_ k  e.  ( ZZ>= `  4 )
( ( n  e. 
NN0  |->  ( ( ( _i  x.  A ) ^ n )  / 
( ! `  n
) ) ) `  k )  e.  CC )
2423recld 10433 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  (
Re `  sum_ k  e.  ( ZZ>= `  4 )
( ( n  e. 
NN0  |->  ( ( ( _i  x.  A ) ^ n )  / 
( ! `  n
) ) ) `  k ) )  e.  RR )
2524recnd 7577 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  (
Re `  sum_ k  e.  ( ZZ>= `  4 )
( ( n  e. 
NN0  |->  ( ( ( _i  x.  A ) ^ n )  / 
( ! `  n
) ) ) `  k ) )  e.  CC )
2611, 16, 25subaddd 7872 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( cos `  A
)  -  ( 1  -  ( ( A ^ 2 )  / 
2 ) ) )  =  ( Re `  sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k ) )  <-> 
( ( 1  -  ( ( A ^
2 )  /  2
) )  +  ( Re `  sum_ k  e.  ( ZZ>= `  4 )
( ( n  e. 
NN0  |->  ( ( ( _i  x.  A ) ^ n )  / 
( ! `  n
) ) ) `  k ) ) )  =  ( cos `  A
) ) )
279, 26mpbird 166 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( cos `  A
)  -  ( 1  -  ( ( A ^ 2 )  / 
2 ) ) )  =  ( Re `  sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k ) ) )
2827fveq2d 5322 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  ( ( cos `  A )  -  (
1  -  ( ( A ^ 2 )  /  2 ) ) ) )  =  ( abs `  ( Re
`  sum_ k  e.  (
ZZ>= `  4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) ) `  k
) ) ) )
2925abscld 10675 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  ( Re `  sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k ) ) )  e.  RR )
3023abscld 10675 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) ) `  k
) )  e.  RR )
31 6nn 8642 . . . . 5  |-  6  e.  NN
32 nndivre 8519 . . . . 5  |-  ( ( ( A ^ 2 )  e.  RR  /\  6  e.  NN )  ->  ( ( A ^
2 )  /  6
)  e.  RR )
3312, 31, 32sylancl 405 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 2 )  /  6 )  e.  RR )
34 absrele 10577 . . . . 5  |-  ( sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k )  e.  CC  ->  ( abs `  ( Re `  sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k ) ) )  <_  ( abs ` 
sum_ k  e.  (
ZZ>= `  4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) ) `  k
) ) )
3523, 34syl 14 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  ( Re `  sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k ) ) )  <_  ( abs ` 
sum_ k  e.  (
ZZ>= `  4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) ) `  k
) ) )
36 reexpcl 10033 . . . . . . 7  |-  ( ( A  e.  RR  /\  4  e.  NN0 )  -> 
( A ^ 4 )  e.  RR )
375, 21, 36sylancl 405 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 4 )  e.  RR )
38 nndivre 8519 . . . . . 6  |-  ( ( ( A ^ 4 )  e.  RR  /\  6  e.  NN )  ->  ( ( A ^
4 )  /  6
)  e.  RR )
3937, 31, 38sylancl 405 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 4 )  /  6 )  e.  RR )
406ef01bndlem 11108 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) ) `  k
) )  <  (
( A ^ 4 )  /  6 ) )
41 2nn0 8751 . . . . . . . 8  |-  2  e.  NN0
4241a1i 9 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  2  e.  NN0 )
43 4z 8841 . . . . . . . . 9  |-  4  e.  ZZ
44 2re 8553 . . . . . . . . . 10  |-  2  e.  RR
45 4re 8560 . . . . . . . . . 10  |-  4  e.  RR
46 2lt4 8650 . . . . . . . . . 10  |-  2  <  4
4744, 45, 46ltleii 7648 . . . . . . . . 9  |-  2  <_  4
48 2z 8839 . . . . . . . . . 10  |-  2  e.  ZZ
4948eluz1i 9087 . . . . . . . . 9  |-  ( 4  e.  ( ZZ>= `  2
)  <->  ( 4  e.  ZZ  /\  2  <_ 
4 ) )
5043, 47, 49mpbir2an 889 . . . . . . . 8  |-  4  e.  ( ZZ>= `  2 )
5150a1i 9 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  4  e.  ( ZZ>= `  2 )
)
524simp2bi 960 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  0  <  A )
53 0re 7549 . . . . . . . . 9  |-  0  e.  RR
54 ltle 7633 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( 0  <  A  ->  0  <_  A )
)
5553, 5, 54sylancr 406 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  (
0  <  A  ->  0  <_  A ) )
5652, 55mpd 13 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  0  <_  A )
574simp3bi 961 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  A  <_  1 )
585, 42, 51, 56, 57leexp2rd 10177 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 4 )  <_ 
( A ^ 2 ) )
59 6re 8564 . . . . . . . 8  |-  6  e.  RR
6059a1i 9 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  6  e.  RR )
61 6pos 8584 . . . . . . . 8  |-  0  <  6
6261a1i 9 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  0  <  6 )
63 lediv1 8391 . . . . . . 7  |-  ( ( ( A ^ 4 )  e.  RR  /\  ( A ^ 2 )  e.  RR  /\  (
6  e.  RR  /\  0  <  6 ) )  ->  ( ( A ^ 4 )  <_ 
( A ^ 2 )  <->  ( ( A ^ 4 )  / 
6 )  <_  (
( A ^ 2 )  /  6 ) ) )
6437, 12, 60, 62, 63syl112anc 1179 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 4 )  <_  ( A ^ 2 )  <->  ( ( A ^ 4 )  / 
6 )  <_  (
( A ^ 2 )  /  6 ) ) )
6558, 64mpbid 146 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 4 )  /  6 )  <_  ( ( A ^ 2 )  / 
6 ) )
6630, 39, 33, 40, 65ltletrd 7962 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) ) `  k
) )  <  (
( A ^ 2 )  /  6 ) )
6729, 30, 33, 35, 66lelttrd 7669 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  ( Re `  sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k ) ) )  <  ( ( A ^ 2 )  /  6 ) )
6828, 67eqbrtrd 3871 . 2  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  ( ( cos `  A )  -  (
1  -  ( ( A ^ 2 )  /  2 ) ) ) )  <  (
( A ^ 2 )  /  6 ) )
6910, 15, 33absdifltd 10672 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( abs `  (
( cos `  A
)  -  ( 1  -  ( ( A ^ 2 )  / 
2 ) ) ) )  <  ( ( A ^ 2 )  /  6 )  <->  ( (
( 1  -  (
( A ^ 2 )  /  2 ) )  -  ( ( A ^ 2 )  /  6 ) )  <  ( cos `  A
)  /\  ( cos `  A )  <  (
( 1  -  (
( A ^ 2 )  /  2 ) )  +  ( ( A ^ 2 )  /  6 ) ) ) ) )
70 1cnd 7565 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  1  e.  CC )
7113recnd 7577 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 2 )  /  2 )  e.  CC )
7233recnd 7577 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 2 )  /  6 )  e.  CC )
7370, 71, 72subsub4d 7885 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( 1  -  (
( A ^ 2 )  /  2 ) )  -  ( ( A ^ 2 )  /  6 ) )  =  ( 1  -  ( ( ( A ^ 2 )  / 
2 )  +  ( ( A ^ 2 )  /  6 ) ) ) )
74 halfpm6th 8697 . . . . . . . . . . 11  |-  ( ( ( 1  /  2
)  -  ( 1  /  6 ) )  =  ( 1  / 
3 )  /\  (
( 1  /  2
)  +  ( 1  /  6 ) )  =  ( 2  / 
3 ) )
7574simpri 112 . . . . . . . . . 10  |-  ( ( 1  /  2 )  +  ( 1  / 
6 ) )  =  ( 2  /  3
)
7675oveq2i 5677 . . . . . . . . 9  |-  ( ( A ^ 2 )  x.  ( ( 1  /  2 )  +  ( 1  /  6
) ) )  =  ( ( A ^
2 )  x.  (
2  /  3 ) )
7712recnd 7577 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 2 )  e.  CC )
78 2cn 8554 . . . . . . . . . . . 12  |-  2  e.  CC
79 2ap0 8576 . . . . . . . . . . . 12  |-  2 #  0
8078, 79recclapi 8270 . . . . . . . . . . 11  |-  ( 1  /  2 )  e.  CC
81 6cn 8565 . . . . . . . . . . . 12  |-  6  e.  CC
8231nnap0i 8514 . . . . . . . . . . . 12  |-  6 #  0
8381, 82recclapi 8270 . . . . . . . . . . 11  |-  ( 1  /  6 )  e.  CC
84 adddi 7535 . . . . . . . . . . 11  |-  ( ( ( A ^ 2 )  e.  CC  /\  ( 1  /  2
)  e.  CC  /\  ( 1  /  6
)  e.  CC )  ->  ( ( A ^ 2 )  x.  ( ( 1  / 
2 )  +  ( 1  /  6 ) ) )  =  ( ( ( A ^
2 )  x.  (
1  /  2 ) )  +  ( ( A ^ 2 )  x.  ( 1  / 
6 ) ) ) )
8580, 83, 84mp3an23 1266 . . . . . . . . . 10  |-  ( ( A ^ 2 )  e.  CC  ->  (
( A ^ 2 )  x.  ( ( 1  /  2 )  +  ( 1  / 
6 ) ) )  =  ( ( ( A ^ 2 )  x.  ( 1  / 
2 ) )  +  ( ( A ^
2 )  x.  (
1  /  6 ) ) ) )
8677, 85syl 14 . . . . . . . . 9  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 2 )  x.  ( ( 1  /  2 )  +  ( 1  / 
6 ) ) )  =  ( ( ( A ^ 2 )  x.  ( 1  / 
2 ) )  +  ( ( A ^
2 )  x.  (
1  /  6 ) ) ) )
8776, 86syl5eqr 2135 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 2 )  x.  ( 2  /  3 ) )  =  ( ( ( A ^ 2 )  x.  ( 1  / 
2 ) )  +  ( ( A ^
2 )  x.  (
1  /  6 ) ) ) )
88 3cn 8558 . . . . . . . . . . 11  |-  3  e.  CC
89 3ap0 8579 . . . . . . . . . . 11  |-  3 #  0
9088, 89pm3.2i 267 . . . . . . . . . 10  |-  ( 3  e.  CC  /\  3 #  0 )
91 div12ap 8222 . . . . . . . . . 10  |-  ( ( 2  e.  CC  /\  ( A ^ 2 )  e.  CC  /\  (
3  e.  CC  /\  3 #  0 ) )  -> 
( 2  x.  (
( A ^ 2 )  /  3 ) )  =  ( ( A ^ 2 )  x.  ( 2  / 
3 ) ) )
9278, 90, 91mp3an13 1265 . . . . . . . . 9  |-  ( ( A ^ 2 )  e.  CC  ->  (
2  x.  ( ( A ^ 2 )  /  3 ) )  =  ( ( A ^ 2 )  x.  ( 2  /  3
) ) )
9377, 92syl 14 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  (
2  x.  ( ( A ^ 2 )  /  3 ) )  =  ( ( A ^ 2 )  x.  ( 2  /  3
) ) )
94 divrecap 8216 . . . . . . . . . . 11  |-  ( ( ( A ^ 2 )  e.  CC  /\  2  e.  CC  /\  2 #  0 )  ->  (
( A ^ 2 )  /  2 )  =  ( ( A ^ 2 )  x.  ( 1  /  2
) ) )
9578, 79, 94mp3an23 1266 . . . . . . . . . 10  |-  ( ( A ^ 2 )  e.  CC  ->  (
( A ^ 2 )  /  2 )  =  ( ( A ^ 2 )  x.  ( 1  /  2
) ) )
9677, 95syl 14 . . . . . . . . 9  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 2 )  /  2 )  =  ( ( A ^ 2 )  x.  ( 1  /  2
) ) )
97 divrecap 8216 . . . . . . . . . . 11  |-  ( ( ( A ^ 2 )  e.  CC  /\  6  e.  CC  /\  6 #  0 )  ->  (
( A ^ 2 )  /  6 )  =  ( ( A ^ 2 )  x.  ( 1  /  6
) ) )
9881, 82, 97mp3an23 1266 . . . . . . . . . 10  |-  ( ( A ^ 2 )  e.  CC  ->  (
( A ^ 2 )  /  6 )  =  ( ( A ^ 2 )  x.  ( 1  /  6
) ) )
9977, 98syl 14 . . . . . . . . 9  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 2 )  /  6 )  =  ( ( A ^ 2 )  x.  ( 1  /  6
) ) )
10096, 99oveq12d 5684 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( A ^
2 )  /  2
)  +  ( ( A ^ 2 )  /  6 ) )  =  ( ( ( A ^ 2 )  x.  ( 1  / 
2 ) )  +  ( ( A ^
2 )  x.  (
1  /  6 ) ) ) )
10187, 93, 1003eqtr4rd 2132 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( A ^
2 )  /  2
)  +  ( ( A ^ 2 )  /  6 ) )  =  ( 2  x.  ( ( A ^
2 )  /  3
) ) )
102101oveq2d 5682 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  (
1  -  ( ( ( A ^ 2 )  /  2 )  +  ( ( A ^ 2 )  / 
6 ) ) )  =  ( 1  -  ( 2  x.  (
( A ^ 2 )  /  3 ) ) ) )
10373, 102eqtrd 2121 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( 1  -  (
( A ^ 2 )  /  2 ) )  -  ( ( A ^ 2 )  /  6 ) )  =  ( 1  -  ( 2  x.  (
( A ^ 2 )  /  3 ) ) ) )
104103breq1d 3861 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( 1  -  ( ( A ^
2 )  /  2
) )  -  (
( A ^ 2 )  /  6 ) )  <  ( cos `  A )  <->  ( 1  -  ( 2  x.  ( ( A ^
2 )  /  3
) ) )  < 
( cos `  A
) ) )
10570, 71, 72subsubd 7882 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  (
1  -  ( ( ( A ^ 2 )  /  2 )  -  ( ( A ^ 2 )  / 
6 ) ) )  =  ( ( 1  -  ( ( A ^ 2 )  / 
2 ) )  +  ( ( A ^
2 )  /  6
) ) )
10674simpli 110 . . . . . . . . . 10  |-  ( ( 1  /  2 )  -  ( 1  / 
6 ) )  =  ( 1  /  3
)
107106oveq2i 5677 . . . . . . . . 9  |-  ( ( A ^ 2 )  x.  ( ( 1  /  2 )  -  ( 1  /  6
) ) )  =  ( ( A ^
2 )  x.  (
1  /  3 ) )
108 subdi 7924 . . . . . . . . . . 11  |-  ( ( ( A ^ 2 )  e.  CC  /\  ( 1  /  2
)  e.  CC  /\  ( 1  /  6
)  e.  CC )  ->  ( ( A ^ 2 )  x.  ( ( 1  / 
2 )  -  (
1  /  6 ) ) )  =  ( ( ( A ^
2 )  x.  (
1  /  2 ) )  -  ( ( A ^ 2 )  x.  ( 1  / 
6 ) ) ) )
10980, 83, 108mp3an23 1266 . . . . . . . . . 10  |-  ( ( A ^ 2 )  e.  CC  ->  (
( A ^ 2 )  x.  ( ( 1  /  2 )  -  ( 1  / 
6 ) ) )  =  ( ( ( A ^ 2 )  x.  ( 1  / 
2 ) )  -  ( ( A ^
2 )  x.  (
1  /  6 ) ) ) )
11077, 109syl 14 . . . . . . . . 9  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 2 )  x.  ( ( 1  /  2 )  -  ( 1  / 
6 ) ) )  =  ( ( ( A ^ 2 )  x.  ( 1  / 
2 ) )  -  ( ( A ^
2 )  x.  (
1  /  6 ) ) ) )
111107, 110syl5eqr 2135 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 2 )  x.  ( 1  /  3 ) )  =  ( ( ( A ^ 2 )  x.  ( 1  / 
2 ) )  -  ( ( A ^
2 )  x.  (
1  /  6 ) ) ) )
112 divrecap 8216 . . . . . . . . . 10  |-  ( ( ( A ^ 2 )  e.  CC  /\  3  e.  CC  /\  3 #  0 )  ->  (
( A ^ 2 )  /  3 )  =  ( ( A ^ 2 )  x.  ( 1  /  3
) ) )
11388, 89, 112mp3an23 1266 . . . . . . . . 9  |-  ( ( A ^ 2 )  e.  CC  ->  (
( A ^ 2 )  /  3 )  =  ( ( A ^ 2 )  x.  ( 1  /  3
) ) )
11477, 113syl 14 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 2 )  /  3 )  =  ( ( A ^ 2 )  x.  ( 1  /  3
) ) )
11596, 99oveq12d 5684 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( A ^
2 )  /  2
)  -  ( ( A ^ 2 )  /  6 ) )  =  ( ( ( A ^ 2 )  x.  ( 1  / 
2 ) )  -  ( ( A ^
2 )  x.  (
1  /  6 ) ) ) )
116111, 114, 1153eqtr4rd 2132 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( A ^
2 )  /  2
)  -  ( ( A ^ 2 )  /  6 ) )  =  ( ( A ^ 2 )  / 
3 ) )
117116oveq2d 5682 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  (
1  -  ( ( ( A ^ 2 )  /  2 )  -  ( ( A ^ 2 )  / 
6 ) ) )  =  ( 1  -  ( ( A ^
2 )  /  3
) ) )
118105, 117eqtr3d 2123 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( 1  -  (
( A ^ 2 )  /  2 ) )  +  ( ( A ^ 2 )  /  6 ) )  =  ( 1  -  ( ( A ^
2 )  /  3
) ) )
119118breq2d 3863 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( cos `  A
)  <  ( (
1  -  ( ( A ^ 2 )  /  2 ) )  +  ( ( A ^ 2 )  / 
6 ) )  <->  ( cos `  A )  <  (
1  -  ( ( A ^ 2 )  /  3 ) ) ) )
120104, 119anbi12d 458 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( ( 1  -  ( ( A ^ 2 )  / 
2 ) )  -  ( ( A ^
2 )  /  6
) )  <  ( cos `  A )  /\  ( cos `  A )  <  ( ( 1  -  ( ( A ^ 2 )  / 
2 ) )  +  ( ( A ^
2 )  /  6
) ) )  <->  ( (
1  -  ( 2  x.  ( ( A ^ 2 )  / 
3 ) ) )  <  ( cos `  A
)  /\  ( cos `  A )  <  (
1  -  ( ( A ^ 2 )  /  3 ) ) ) ) )
12169, 120bitrd 187 . 2  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( abs `  (
( cos `  A
)  -  ( 1  -  ( ( A ^ 2 )  / 
2 ) ) ) )  <  ( ( A ^ 2 )  /  6 )  <->  ( (
1  -  ( 2  x.  ( ( A ^ 2 )  / 
3 ) ) )  <  ( cos `  A
)  /\  ( cos `  A )  <  (
1  -  ( ( A ^ 2 )  /  3 ) ) ) ) )
12268, 121mpbid 146 1  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( 1  -  (
2  x.  ( ( A ^ 2 )  /  3 ) ) )  <  ( cos `  A )  /\  ( cos `  A )  < 
( 1  -  (
( A ^ 2 )  /  3 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 925    = wceq 1290    e. wcel 1439   class class class wbr 3851    |-> cmpt 3905   ` cfv 5028  (class class class)co 5666   CCcc 7409   RRcr 7410   0cc0 7411   1c1 7412   _ici 7413    + caddc 7414    x. cmul 7416   RR*cxr 7582    < clt 7583    <_ cle 7584    - cmin 7714   # cap 8119    / cdiv 8200   NNcn 8483   2c2 8534   3c3 8535   4c4 8536   6c6 8538   NN0cn0 8734   ZZcz 8811   ZZ>=cuz 9080   (,]cioc 9368   ^cexp 10015   !cfa 10194   Recre 10335   abscabs 10491   sum_csu 10803   cosccos 10996
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3960  ax-sep 3963  ax-nul 3971  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-iinf 4416  ax-cnex 7497  ax-resscn 7498  ax-1cn 7499  ax-1re 7500  ax-icn 7501  ax-addcl 7502  ax-addrcl 7503  ax-mulcl 7504  ax-mulrcl 7505  ax-addcom 7506  ax-mulcom 7507  ax-addass 7508  ax-mulass 7509  ax-distr 7510  ax-i2m1 7511  ax-0lt1 7512  ax-1rid 7513  ax-0id 7514  ax-rnegex 7515  ax-precex 7516  ax-cnre 7517  ax-pre-ltirr 7518  ax-pre-ltwlin 7519  ax-pre-lttrn 7520  ax-pre-apti 7521  ax-pre-ltadd 7522  ax-pre-mulgt0 7523  ax-pre-mulext 7524  ax-arch 7525  ax-caucvg 7526
This theorem depends on definitions:  df-bi 116  df-dc 782  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rmo 2368  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-if 3398  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-iun 3738  df-br 3852  df-opab 3906  df-mpt 3907  df-tr 3943  df-id 4129  df-po 4132  df-iso 4133  df-iord 4202  df-on 4204  df-ilim 4205  df-suc 4207  df-iom 4419  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-rn 4463  df-res 4464  df-ima 4465  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-f1 5033  df-fo 5034  df-f1o 5035  df-fv 5036  df-isom 5037  df-riota 5622  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-1st 5925  df-2nd 5926  df-recs 6084  df-irdg 6149  df-frec 6170  df-1o 6195  df-oadd 6199  df-er 6306  df-en 6512  df-dom 6513  df-fin 6514  df-pnf 7585  df-mnf 7586  df-xr 7587  df-ltxr 7588  df-le 7589  df-sub 7716  df-neg 7717  df-reap 8113  df-ap 8120  df-div 8201  df-inn 8484  df-2 8542  df-3 8543  df-4 8544  df-5 8545  df-6 8546  df-7 8547  df-8 8548  df-n0 8735  df-z 8812  df-uz 9081  df-q 9166  df-rp 9196  df-ioc 9372  df-ico 9373  df-fz 9486  df-fzo 9615  df-iseq 9914  df-seq3 9915  df-exp 10016  df-fac 10195  df-ihash 10245  df-shft 10310  df-cj 10337  df-re 10338  df-im 10339  df-rsqrt 10492  df-abs 10493  df-clim 10728  df-isum 10804  df-ef 10999  df-cos 11002
This theorem is referenced by:  cos1bnd  11111  cos01gt0  11114
  Copyright terms: Public domain W3C validator