| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cos01bnd | Unicode version | ||
| Description: Bounds on the cosine of a positive real number less than or equal to 1. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| Ref | Expression |
|---|---|
| cos01bnd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr 8073 |
. . . . . . . . 9
| |
| 2 | 1re 8025 |
. . . . . . . . 9
| |
| 3 | elioc2 10011 |
. . . . . . . . 9
| |
| 4 | 1, 2, 3 | mp2an 426 |
. . . . . . . 8
|
| 5 | 4 | simp1bi 1014 |
. . . . . . 7
|
| 6 | eqid 2196 |
. . . . . . . 8
| |
| 7 | 6 | recos4p 11884 |
. . . . . . 7
|
| 8 | 5, 7 | syl 14 |
. . . . . 6
|
| 9 | 8 | eqcomd 2202 |
. . . . 5
|
| 10 | 5 | recoscld 11889 |
. . . . . . 7
|
| 11 | 10 | recnd 8055 |
. . . . . 6
|
| 12 | 5 | resqcld 10791 |
. . . . . . . . 9
|
| 13 | 12 | rehalfcld 9238 |
. . . . . . . 8
|
| 14 | resubcl 8290 |
. . . . . . . 8
| |
| 15 | 2, 13, 14 | sylancr 414 |
. . . . . . 7
|
| 16 | 15 | recnd 8055 |
. . . . . 6
|
| 17 | ax-icn 7974 |
. . . . . . . . . 10
| |
| 18 | 5 | recnd 8055 |
. . . . . . . . . 10
|
| 19 | mulcl 8006 |
. . . . . . . . . 10
| |
| 20 | 17, 18, 19 | sylancr 414 |
. . . . . . . . 9
|
| 21 | 4nn0 9268 |
. . . . . . . . 9
| |
| 22 | 6 | eftlcl 11853 |
. . . . . . . . 9
|
| 23 | 20, 21, 22 | sylancl 413 |
. . . . . . . 8
|
| 24 | 23 | recld 11103 |
. . . . . . 7
|
| 25 | 24 | recnd 8055 |
. . . . . 6
|
| 26 | 11, 16, 25 | subaddd 8355 |
. . . . 5
|
| 27 | 9, 26 | mpbird 167 |
. . . 4
|
| 28 | 27 | fveq2d 5562 |
. . 3
|
| 29 | 25 | abscld 11346 |
. . . 4
|
| 30 | 23 | abscld 11346 |
. . . 4
|
| 31 | 6nn 9156 |
. . . . 5
| |
| 32 | nndivre 9026 |
. . . . 5
| |
| 33 | 12, 31, 32 | sylancl 413 |
. . . 4
|
| 34 | absrele 11248 |
. . . . 5
| |
| 35 | 23, 34 | syl 14 |
. . . 4
|
| 36 | reexpcl 10648 |
. . . . . . 7
| |
| 37 | 5, 21, 36 | sylancl 413 |
. . . . . 6
|
| 38 | nndivre 9026 |
. . . . . 6
| |
| 39 | 37, 31, 38 | sylancl 413 |
. . . . 5
|
| 40 | 6 | ef01bndlem 11921 |
. . . . 5
|
| 41 | 2nn0 9266 |
. . . . . . . 8
| |
| 42 | 41 | a1i 9 |
. . . . . . 7
|
| 43 | 4z 9356 |
. . . . . . . . 9
| |
| 44 | 2re 9060 |
. . . . . . . . . 10
| |
| 45 | 4re 9067 |
. . . . . . . . . 10
| |
| 46 | 2lt4 9164 |
. . . . . . . . . 10
| |
| 47 | 44, 45, 46 | ltleii 8129 |
. . . . . . . . 9
|
| 48 | 2z 9354 |
. . . . . . . . . 10
| |
| 49 | 48 | eluz1i 9608 |
. . . . . . . . 9
|
| 50 | 43, 47, 49 | mpbir2an 944 |
. . . . . . . 8
|
| 51 | 50 | a1i 9 |
. . . . . . 7
|
| 52 | 4 | simp2bi 1015 |
. . . . . . . 8
|
| 53 | 0re 8026 |
. . . . . . . . 9
| |
| 54 | ltle 8114 |
. . . . . . . . 9
| |
| 55 | 53, 5, 54 | sylancr 414 |
. . . . . . . 8
|
| 56 | 52, 55 | mpd 13 |
. . . . . . 7
|
| 57 | 4 | simp3bi 1016 |
. . . . . . 7
|
| 58 | 5, 42, 51, 56, 57 | leexp2rd 10795 |
. . . . . 6
|
| 59 | 6re 9071 |
. . . . . . . 8
| |
| 60 | 59 | a1i 9 |
. . . . . . 7
|
| 61 | 6pos 9091 |
. . . . . . . 8
| |
| 62 | 61 | a1i 9 |
. . . . . . 7
|
| 63 | lediv1 8896 |
. . . . . . 7
| |
| 64 | 37, 12, 60, 62, 63 | syl112anc 1253 |
. . . . . 6
|
| 65 | 58, 64 | mpbid 147 |
. . . . 5
|
| 66 | 30, 39, 33, 40, 65 | ltletrd 8450 |
. . . 4
|
| 67 | 29, 30, 33, 35, 66 | lelttrd 8151 |
. . 3
|
| 68 | 28, 67 | eqbrtrd 4055 |
. 2
|
| 69 | 10, 15, 33 | absdifltd 11343 |
. . 3
|
| 70 | 1cnd 8042 |
. . . . . . 7
| |
| 71 | 13 | recnd 8055 |
. . . . . . 7
|
| 72 | 33 | recnd 8055 |
. . . . . . 7
|
| 73 | 70, 71, 72 | subsub4d 8368 |
. . . . . 6
|
| 74 | halfpm6th 9211 |
. . . . . . . . . . 11
| |
| 75 | 74 | simpri 113 |
. . . . . . . . . 10
|
| 76 | 75 | oveq2i 5933 |
. . . . . . . . 9
|
| 77 | 12 | recnd 8055 |
. . . . . . . . . 10
|
| 78 | 2cn 9061 |
. . . . . . . . . . . 12
| |
| 79 | 2ap0 9083 |
. . . . . . . . . . . 12
| |
| 80 | 78, 79 | recclapi 8769 |
. . . . . . . . . . 11
|
| 81 | 6cn 9072 |
. . . . . . . . . . . 12
| |
| 82 | 31 | nnap0i 9021 |
. . . . . . . . . . . 12
|
| 83 | 81, 82 | recclapi 8769 |
. . . . . . . . . . 11
|
| 84 | adddi 8011 |
. . . . . . . . . . 11
| |
| 85 | 80, 83, 84 | mp3an23 1340 |
. . . . . . . . . 10
|
| 86 | 77, 85 | syl 14 |
. . . . . . . . 9
|
| 87 | 76, 86 | eqtr3id 2243 |
. . . . . . . 8
|
| 88 | 3cn 9065 |
. . . . . . . . . . 11
| |
| 89 | 3ap0 9086 |
. . . . . . . . . . 11
| |
| 90 | 88, 89 | pm3.2i 272 |
. . . . . . . . . 10
|
| 91 | div12ap 8721 |
. . . . . . . . . 10
| |
| 92 | 78, 90, 91 | mp3an13 1339 |
. . . . . . . . 9
|
| 93 | 77, 92 | syl 14 |
. . . . . . . 8
|
| 94 | divrecap 8715 |
. . . . . . . . . . 11
| |
| 95 | 78, 79, 94 | mp3an23 1340 |
. . . . . . . . . 10
|
| 96 | 77, 95 | syl 14 |
. . . . . . . . 9
|
| 97 | divrecap 8715 |
. . . . . . . . . . 11
| |
| 98 | 81, 82, 97 | mp3an23 1340 |
. . . . . . . . . 10
|
| 99 | 77, 98 | syl 14 |
. . . . . . . . 9
|
| 100 | 96, 99 | oveq12d 5940 |
. . . . . . . 8
|
| 101 | 87, 93, 100 | 3eqtr4rd 2240 |
. . . . . . 7
|
| 102 | 101 | oveq2d 5938 |
. . . . . 6
|
| 103 | 73, 102 | eqtrd 2229 |
. . . . 5
|
| 104 | 103 | breq1d 4043 |
. . . 4
|
| 105 | 70, 71, 72 | subsubd 8365 |
. . . . . 6
|
| 106 | 74 | simpli 111 |
. . . . . . . . . 10
|
| 107 | 106 | oveq2i 5933 |
. . . . . . . . 9
|
| 108 | subdi 8411 |
. . . . . . . . . . 11
| |
| 109 | 80, 83, 108 | mp3an23 1340 |
. . . . . . . . . 10
|
| 110 | 77, 109 | syl 14 |
. . . . . . . . 9
|
| 111 | 107, 110 | eqtr3id 2243 |
. . . . . . . 8
|
| 112 | divrecap 8715 |
. . . . . . . . . 10
| |
| 113 | 88, 89, 112 | mp3an23 1340 |
. . . . . . . . 9
|
| 114 | 77, 113 | syl 14 |
. . . . . . . 8
|
| 115 | 96, 99 | oveq12d 5940 |
. . . . . . . 8
|
| 116 | 111, 114, 115 | 3eqtr4rd 2240 |
. . . . . . 7
|
| 117 | 116 | oveq2d 5938 |
. . . . . 6
|
| 118 | 105, 117 | eqtr3d 2231 |
. . . . 5
|
| 119 | 118 | breq2d 4045 |
. . . 4
|
| 120 | 104, 119 | anbi12d 473 |
. . 3
|
| 121 | 69, 120 | bitrd 188 |
. 2
|
| 122 | 68, 121 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-frec 6449 df-1o 6474 df-oadd 6478 df-er 6592 df-en 6800 df-dom 6801 df-fin 6802 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-7 9054 df-8 9055 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-ioc 9968 df-ico 9969 df-fz 10084 df-fzo 10218 df-seqfrec 10540 df-exp 10631 df-fac 10818 df-ihash 10868 df-shft 10980 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-clim 11444 df-sumdc 11519 df-ef 11813 df-cos 11816 |
| This theorem is referenced by: cos1bnd 11924 cos01gt0 11928 tangtx 15074 |
| Copyright terms: Public domain | W3C validator |