ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  adddiri GIF version

Theorem adddiri 8096
Description: Distributive law (right-distributivity). (Contributed by NM, 16-Feb-1995.)
Hypotheses
Ref Expression
axi.1 𝐴 ∈ ℂ
axi.2 𝐵 ∈ ℂ
axi.3 𝐶 ∈ ℂ
Assertion
Ref Expression
adddiri ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶))

Proof of Theorem adddiri
StepHypRef Expression
1 axi.1 . 2 𝐴 ∈ ℂ
2 axi.2 . 2 𝐵 ∈ ℂ
3 axi.3 . 2 𝐶 ∈ ℂ
4 adddir 8076 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶)))
51, 2, 3, 4mp3an 1350 1 ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶))
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wcel 2177  (class class class)co 5954  cc 7936   + caddc 7941   · cmul 7943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-addcl 8034  ax-mulcom 8039  ax-distr 8042
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rex 2491  df-v 2775  df-un 3172  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-br 4049  df-iota 5238  df-fv 5285  df-ov 5957
This theorem is referenced by:  numma  9560  binom2i  10806  3dvdsdec  12226  3dvds2dec  12227  dec5nprm  12787  dec2nprm  12788  karatsuba  12803  sincosq3sgn  15350  sincosq4sgn  15351  cosq23lt0  15355  2lgsoddprmlem3c  15636  2lgsoddprmlem3d  15637
  Copyright terms: Public domain W3C validator