ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bastop GIF version

Theorem bastop 14254
Description: Two ways to express that a basis is a topology. (Contributed by NM, 18-Jul-2006.)
Assertion
Ref Expression
bastop (𝐵 ∈ TopBases → (𝐵 ∈ Top ↔ (topGen‘𝐵) = 𝐵))

Proof of Theorem bastop
StepHypRef Expression
1 tgtop 14247 . 2 (𝐵 ∈ Top → (topGen‘𝐵) = 𝐵)
2 tgcl 14243 . . 3 (𝐵 ∈ TopBases → (topGen‘𝐵) ∈ Top)
3 eleq1 2256 . . 3 ((topGen‘𝐵) = 𝐵 → ((topGen‘𝐵) ∈ Top ↔ 𝐵 ∈ Top))
42, 3syl5ibcom 155 . 2 (𝐵 ∈ TopBases → ((topGen‘𝐵) = 𝐵𝐵 ∈ Top))
51, 4impbid2 143 1 (𝐵 ∈ TopBases → (𝐵 ∈ Top ↔ (topGen‘𝐵) = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wcel 2164  cfv 5255  topGenctg 12868  Topctop 14176  TopBasesctb 14221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fv 5263  df-topgen 12874  df-top 14177  df-bases 14222
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator