![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bastop | GIF version |
Description: Two ways to express that a basis is a topology. (Contributed by NM, 18-Jul-2006.) |
Ref | Expression |
---|---|
bastop | β’ (π΅ β TopBases β (π΅ β Top β (topGenβπ΅) = π΅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgtop 13571 | . 2 β’ (π΅ β Top β (topGenβπ΅) = π΅) | |
2 | tgcl 13567 | . . 3 β’ (π΅ β TopBases β (topGenβπ΅) β Top) | |
3 | eleq1 2240 | . . 3 β’ ((topGenβπ΅) = π΅ β ((topGenβπ΅) β Top β π΅ β Top)) | |
4 | 2, 3 | syl5ibcom 155 | . 2 β’ (π΅ β TopBases β ((topGenβπ΅) = π΅ β π΅ β Top)) |
5 | 1, 4 | impbid2 143 | 1 β’ (π΅ β TopBases β (π΅ β Top β (topGenβπ΅) = π΅)) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β wb 105 = wceq 1353 β wcel 2148 βcfv 5217 topGenctg 12703 Topctop 13500 TopBasesctb 13545 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 ax-un 4434 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2740 df-sbc 2964 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-br 4005 df-opab 4066 df-mpt 4067 df-id 4294 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-iota 5179 df-fun 5219 df-fv 5225 df-topgen 12709 df-top 13501 df-bases 13546 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |