Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > caucvgprprlemcbv | Unicode version |
Description: Lemma for caucvgprpr 7674. Change bound variables in Cauchy condition. (Contributed by Jim Kingdon, 12-Feb-2021.) |
Ref | Expression |
---|---|
caucvgprpr.f | |
caucvgprpr.cau |
Ref | Expression |
---|---|
caucvgprprlemcbv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caucvgprpr.cau | . 2 | |
2 | breq1 3992 | . . . 4 | |
3 | fveq2 5496 | . . . . . 6 | |
4 | opeq1 3765 | . . . . . . . . . . . 12 | |
5 | 4 | eceq1d 6549 | . . . . . . . . . . 11 |
6 | 5 | fveq2d 5500 | . . . . . . . . . 10 |
7 | 6 | breq2d 4001 | . . . . . . . . 9 |
8 | 7 | abbidv 2288 | . . . . . . . 8 |
9 | 6 | breq1d 3999 | . . . . . . . . 9 |
10 | 9 | abbidv 2288 | . . . . . . . 8 |
11 | 8, 10 | opeq12d 3773 | . . . . . . 7 |
12 | 11 | oveq2d 5869 | . . . . . 6 |
13 | 3, 12 | breq12d 4002 | . . . . 5 |
14 | 3, 11 | oveq12d 5871 | . . . . . 6 |
15 | 14 | breq2d 4001 | . . . . 5 |
16 | 13, 15 | anbi12d 470 | . . . 4 |
17 | 2, 16 | imbi12d 233 | . . 3 |
18 | breq2 3993 | . . . 4 | |
19 | fveq2 5496 | . . . . . . 7 | |
20 | 19 | oveq1d 5868 | . . . . . 6 |
21 | 20 | breq2d 4001 | . . . . 5 |
22 | 19 | breq1d 3999 | . . . . 5 |
23 | 21, 22 | anbi12d 470 | . . . 4 |
24 | 18, 23 | imbi12d 233 | . . 3 |
25 | 17, 24 | cbvral2v 2709 | . 2 |
26 | 1, 25 | sylib 121 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 cab 2156 wral 2448 cop 3586 class class class wbr 3989 wf 5194 cfv 5198 (class class class)co 5853 c1o 6388 cec 6511 cnpi 7234 clti 7237 ceq 7241 crq 7246 cltq 7247 cnp 7253 cpp 7255 cltp 7257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-xp 4617 df-cnv 4619 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fv 5206 df-ov 5856 df-ec 6515 |
This theorem is referenced by: caucvgprprlemval 7650 |
Copyright terms: Public domain | W3C validator |