| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caucvgprprlemcbv | Unicode version | ||
| Description: Lemma for caucvgprpr 7779. Change bound variables in Cauchy condition. (Contributed by Jim Kingdon, 12-Feb-2021.) |
| Ref | Expression |
|---|---|
| caucvgprpr.f |
|
| caucvgprpr.cau |
|
| Ref | Expression |
|---|---|
| caucvgprprlemcbv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caucvgprpr.cau |
. 2
| |
| 2 | breq1 4036 |
. . . 4
| |
| 3 | fveq2 5558 |
. . . . . 6
| |
| 4 | opeq1 3808 |
. . . . . . . . . . . 12
| |
| 5 | 4 | eceq1d 6628 |
. . . . . . . . . . 11
|
| 6 | 5 | fveq2d 5562 |
. . . . . . . . . 10
|
| 7 | 6 | breq2d 4045 |
. . . . . . . . 9
|
| 8 | 7 | abbidv 2314 |
. . . . . . . 8
|
| 9 | 6 | breq1d 4043 |
. . . . . . . . 9
|
| 10 | 9 | abbidv 2314 |
. . . . . . . 8
|
| 11 | 8, 10 | opeq12d 3816 |
. . . . . . 7
|
| 12 | 11 | oveq2d 5938 |
. . . . . 6
|
| 13 | 3, 12 | breq12d 4046 |
. . . . 5
|
| 14 | 3, 11 | oveq12d 5940 |
. . . . . 6
|
| 15 | 14 | breq2d 4045 |
. . . . 5
|
| 16 | 13, 15 | anbi12d 473 |
. . . 4
|
| 17 | 2, 16 | imbi12d 234 |
. . 3
|
| 18 | breq2 4037 |
. . . 4
| |
| 19 | fveq2 5558 |
. . . . . . 7
| |
| 20 | 19 | oveq1d 5937 |
. . . . . 6
|
| 21 | 20 | breq2d 4045 |
. . . . 5
|
| 22 | 19 | breq1d 4043 |
. . . . 5
|
| 23 | 21, 22 | anbi12d 473 |
. . . 4
|
| 24 | 18, 23 | imbi12d 234 |
. . 3
|
| 25 | 17, 24 | cbvral2v 2742 |
. 2
|
| 26 | 1, 25 | sylib 122 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-cnv 4671 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fv 5266 df-ov 5925 df-ec 6594 |
| This theorem is referenced by: caucvgprprlemval 7755 |
| Copyright terms: Public domain | W3C validator |