ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemcbv Unicode version

Theorem caucvgprprlemcbv 7799
Description: Lemma for caucvgprpr 7824. Change bound variables in Cauchy condition. (Contributed by Jim Kingdon, 12-Feb-2021.)
Hypotheses
Ref Expression
caucvgprpr.f  |-  ( ph  ->  F : N. --> P. )
caucvgprpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <P  ( ( F `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
Assertion
Ref Expression
caucvgprprlemcbv  |-  ( ph  ->  A. a  e.  N.  A. b  e.  N.  (
a  <N  b  ->  (
( F `  a
)  <P  ( ( F `
 b )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  b
)  <P  ( ( F `
 a )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
Distinct variable groups:    F, a, b, k    n, F, a, k    a, l, b, k    u, a, b, k    n, l    u, n
Allowed substitution hints:    ph( u, k, n, a, b, l)    F( u, l)

Proof of Theorem caucvgprprlemcbv
StepHypRef Expression
1 caucvgprpr.cau . 2  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <P  ( ( F `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
2 breq1 4046 . . . 4  |-  ( n  =  a  ->  (
n  <N  k  <->  a  <N  k ) )
3 fveq2 5575 . . . . . 6  |-  ( n  =  a  ->  ( F `  n )  =  ( F `  a ) )
4 opeq1 3818 . . . . . . . . . . . 12  |-  ( n  =  a  ->  <. n ,  1o >.  =  <. a ,  1o >. )
54eceq1d 6655 . . . . . . . . . . 11  |-  ( n  =  a  ->  [ <. n ,  1o >. ]  ~Q  =  [ <. a ,  1o >. ]  ~Q  )
65fveq2d 5579 . . . . . . . . . 10  |-  ( n  =  a  ->  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  =  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )
76breq2d 4055 . . . . . . . . 9  |-  ( n  =  a  ->  (
l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <->  l  <Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) )
87abbidv 2322 . . . . . . . 8  |-  ( n  =  a  ->  { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) }  =  { l  |  l  <Q  ( *Q
`  [ <. a ,  1o >. ]  ~Q  ) } )
96breq1d 4053 . . . . . . . . 9  |-  ( n  =  a  ->  (
( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u  <->  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  <Q  u ) )
109abbidv 2322 . . . . . . . 8  |-  ( n  =  a  ->  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u }  =  {
u  |  ( *Q
`  [ <. a ,  1o >. ]  ~Q  )  <Q  u } )
118, 10opeq12d 3826 . . . . . . 7  |-  ( n  =  a  ->  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  =  <. { l  |  l  <Q 
( *Q `  [ <. a ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  <Q  u } >. )
1211oveq2d 5959 . . . . . 6  |-  ( n  =  a  ->  (
( F `  k
)  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  =  ( ( F `  k
)  +P.  <. { l  |  l  <Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  <Q  u } >. ) )
133, 12breq12d 4056 . . . . 5  |-  ( n  =  a  ->  (
( F `  n
)  <P  ( ( F `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  <->  ( F `  a ) 
<P  ( ( F `  k )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. a ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  <Q  u } >. )
) )
143, 11oveq12d 5961 . . . . . 6  |-  ( n  =  a  ->  (
( F `  n
)  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  =  ( ( F `  a
)  +P.  <. { l  |  l  <Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  <Q  u } >. ) )
1514breq2d 4055 . . . . 5  |-  ( n  =  a  ->  (
( F `  k
)  <P  ( ( F `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  <->  ( F `  k ) 
<P  ( ( F `  a )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. a ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  <Q  u } >. )
) )
1613, 15anbi12d 473 . . . 4  |-  ( n  =  a  ->  (
( ( F `  n )  <P  (
( F `  k
)  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k )  <P  ( ( F `  n )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
)  <->  ( ( F `
 a )  <P 
( ( F `  k )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. a ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 a )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
172, 16imbi12d 234 . . 3  |-  ( n  =  a  ->  (
( n  <N  k  ->  ( ( F `  n )  <P  (
( F `  k
)  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k )  <P  ( ( F `  n )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) )  <->  ( a  <N  k  ->  ( ( F `  a )  <P  ( ( F `  k )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. a ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 a )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) ) )
18 breq2 4047 . . . 4  |-  ( k  =  b  ->  (
a  <N  k  <->  a  <N  b ) )
19 fveq2 5575 . . . . . . 7  |-  ( k  =  b  ->  ( F `  k )  =  ( F `  b ) )
2019oveq1d 5958 . . . . . 6  |-  ( k  =  b  ->  (
( F `  k
)  +P.  <. { l  |  l  <Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  <Q  u } >. )  =  ( ( F `  b
)  +P.  <. { l  |  l  <Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  <Q  u } >. ) )
2120breq2d 4055 . . . . 5  |-  ( k  =  b  ->  (
( F `  a
)  <P  ( ( F `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  <Q  u } >. )  <->  ( F `  a ) 
<P  ( ( F `  b )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. a ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  <Q  u } >. )
) )
2219breq1d 4053 . . . . 5  |-  ( k  =  b  ->  (
( F `  k
)  <P  ( ( F `
 a )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  <Q  u } >. )  <->  ( F `  b ) 
<P  ( ( F `  a )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. a ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  <Q  u } >. )
) )
2321, 22anbi12d 473 . . . 4  |-  ( k  =  b  ->  (
( ( F `  a )  <P  (
( F `  k
)  +P.  <. { l  |  l  <Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k )  <P  ( ( F `  a )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. a ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  <Q  u } >. )
)  <->  ( ( F `
 a )  <P 
( ( F `  b )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. a ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  b
)  <P  ( ( F `
 a )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
2418, 23imbi12d 234 . . 3  |-  ( k  =  b  ->  (
( a  <N  k  ->  ( ( F `  a )  <P  (
( F `  k
)  +P.  <. { l  |  l  <Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k )  <P  ( ( F `  a )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. a ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  <Q  u } >. )
) )  <->  ( a  <N  b  ->  ( ( F `  a )  <P  ( ( F `  b )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. a ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  b
)  <P  ( ( F `
 a )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) ) )
2517, 24cbvral2v 2750 . 2  |-  ( A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  ( ( F `
 n )  <P 
( ( F `  k )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) )  <->  A. a  e.  N.  A. b  e. 
N.  ( a  <N 
b  ->  ( ( F `  a )  <P  ( ( F `  b )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. a ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  b
)  <P  ( ( F `
 a )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
261, 25sylib 122 1  |-  ( ph  ->  A. a  e.  N.  A. b  e.  N.  (
a  <N  b  ->  (
( F `  a
)  <P  ( ( F `
 b )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  b
)  <P  ( ( F `
 a )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   {cab 2190   A.wral 2483   <.cop 3635   class class class wbr 4043   -->wf 5266   ` cfv 5270  (class class class)co 5943   1oc1o 6494   [cec 6617   N.cnpi 7384    <N clti 7387    ~Q ceq 7391   *Qcrq 7396    <Q cltq 7397   P.cnp 7403    +P. cpp 7405    <P cltp 7407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-xp 4680  df-cnv 4682  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fv 5278  df-ov 5946  df-ec 6621
This theorem is referenced by:  caucvgprprlemval  7800
  Copyright terms: Public domain W3C validator