| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caucvgprprlemcbv | Unicode version | ||
| Description: Lemma for caucvgprpr 7825. Change bound variables in Cauchy condition. (Contributed by Jim Kingdon, 12-Feb-2021.) |
| Ref | Expression |
|---|---|
| caucvgprpr.f |
|
| caucvgprpr.cau |
|
| Ref | Expression |
|---|---|
| caucvgprprlemcbv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caucvgprpr.cau |
. 2
| |
| 2 | breq1 4047 |
. . . 4
| |
| 3 | fveq2 5576 |
. . . . . 6
| |
| 4 | opeq1 3819 |
. . . . . . . . . . . 12
| |
| 5 | 4 | eceq1d 6656 |
. . . . . . . . . . 11
|
| 6 | 5 | fveq2d 5580 |
. . . . . . . . . 10
|
| 7 | 6 | breq2d 4056 |
. . . . . . . . 9
|
| 8 | 7 | abbidv 2323 |
. . . . . . . 8
|
| 9 | 6 | breq1d 4054 |
. . . . . . . . 9
|
| 10 | 9 | abbidv 2323 |
. . . . . . . 8
|
| 11 | 8, 10 | opeq12d 3827 |
. . . . . . 7
|
| 12 | 11 | oveq2d 5960 |
. . . . . 6
|
| 13 | 3, 12 | breq12d 4057 |
. . . . 5
|
| 14 | 3, 11 | oveq12d 5962 |
. . . . . 6
|
| 15 | 14 | breq2d 4056 |
. . . . 5
|
| 16 | 13, 15 | anbi12d 473 |
. . . 4
|
| 17 | 2, 16 | imbi12d 234 |
. . 3
|
| 18 | breq2 4048 |
. . . 4
| |
| 19 | fveq2 5576 |
. . . . . . 7
| |
| 20 | 19 | oveq1d 5959 |
. . . . . 6
|
| 21 | 20 | breq2d 4056 |
. . . . 5
|
| 22 | 19 | breq1d 4054 |
. . . . 5
|
| 23 | 21, 22 | anbi12d 473 |
. . . 4
|
| 24 | 18, 23 | imbi12d 234 |
. . 3
|
| 25 | 17, 24 | cbvral2v 2751 |
. 2
|
| 26 | 1, 25 | sylib 122 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-xp 4681 df-cnv 4683 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fv 5279 df-ov 5947 df-ec 6622 |
| This theorem is referenced by: caucvgprprlemval 7801 |
| Copyright terms: Public domain | W3C validator |