| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caucvgprpr | Unicode version | ||
| Description: A Cauchy sequence of
positive reals with a modulus of convergence
converges to a positive real. This is basically Corollary 11.2.13 of
[HoTT], p. (varies) (one key difference
being that this is for
positive reals rather than signed reals). Also, the HoTT book theorem
has a modulus of convergence (that is, a rate of convergence)
specified by (11.2.9) in HoTT whereas this theorem fixes the rate of
convergence to say that all terms after the nth term must be within
This is similar to caucvgpr 7797 except that values of the sequence are positive reals rather than positive fractions. Reading that proof first (or cauappcvgpr 7777) might help in understanding this one, as they are slightly simpler but similarly structured. (Contributed by Jim Kingdon, 14-Nov-2020.) |
| Ref | Expression |
|---|---|
| caucvgprpr.f |
|
| caucvgprpr.cau |
|
| caucvgprpr.bnd |
|
| Ref | Expression |
|---|---|
| caucvgprpr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caucvgprpr.f |
. . 3
| |
| 2 | caucvgprpr.cau |
. . 3
| |
| 3 | caucvgprpr.bnd |
. . 3
| |
| 4 | eqid 2205 |
. . 3
| |
| 5 | 1, 2, 3, 4 | caucvgprprlemcl 7819 |
. 2
|
| 6 | 1, 2, 3, 4 | caucvgprprlemlim 7826 |
. 2
|
| 7 | oveq1 5953 |
. . . . . . . 8
| |
| 8 | 7 | breq2d 4057 |
. . . . . . 7
|
| 9 | breq1 4048 |
. . . . . . 7
| |
| 10 | 8, 9 | anbi12d 473 |
. . . . . 6
|
| 11 | 10 | imbi2d 230 |
. . . . 5
|
| 12 | 11 | rexralbidv 2532 |
. . . 4
|
| 13 | 12 | ralbidv 2506 |
. . 3
|
| 14 | 13 | rspcev 2877 |
. 2
|
| 15 | 5, 6, 14 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-iinf 4637 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-tr 4144 df-eprel 4337 df-id 4341 df-po 4344 df-iso 4345 df-iord 4414 df-on 4416 df-suc 4419 df-iom 4640 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-recs 6393 df-irdg 6458 df-1o 6504 df-2o 6505 df-oadd 6508 df-omul 6509 df-er 6622 df-ec 6624 df-qs 6628 df-ni 7419 df-pli 7420 df-mi 7421 df-lti 7422 df-plpq 7459 df-mpq 7460 df-enq 7462 df-nqqs 7463 df-plqqs 7464 df-mqqs 7465 df-1nqqs 7466 df-rq 7467 df-ltnqqs 7468 df-enq0 7539 df-nq0 7540 df-0nq0 7541 df-plq0 7542 df-mq0 7543 df-inp 7581 df-iplp 7583 df-iltp 7585 |
| This theorem is referenced by: caucvgsrlemgt1 7910 |
| Copyright terms: Public domain | W3C validator |