| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caucvgprprlemelu | Unicode version | ||
| Description: Lemma for caucvgprpr 7860. Membership in the upper cut of the putative limit. (Contributed by Jim Kingdon, 28-Jan-2021.) |
| Ref | Expression |
|---|---|
| caucvgprprlemell.lim |
|
| Ref | Expression |
|---|---|
| caucvgprprlemelu |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 4063 |
. . . . . . 7
| |
| 2 | 1 | abbidv 2325 |
. . . . . 6
|
| 3 | breq1 4062 |
. . . . . . 7
| |
| 4 | 3 | abbidv 2325 |
. . . . . 6
|
| 5 | 2, 4 | opeq12d 3841 |
. . . . 5
|
| 6 | 5 | breq2d 4071 |
. . . 4
|
| 7 | 6 | rexbidv 2509 |
. . 3
|
| 8 | caucvgprprlemell.lim |
. . . . 5
| |
| 9 | 8 | fveq2i 5602 |
. . . 4
|
| 10 | nqex 7511 |
. . . . . 6
| |
| 11 | 10 | rabex 4204 |
. . . . 5
|
| 12 | 10 | rabex 4204 |
. . . . 5
|
| 13 | 11, 12 | op2nd 6256 |
. . . 4
|
| 14 | 9, 13 | eqtri 2228 |
. . 3
|
| 15 | 7, 14 | elrab2 2939 |
. 2
|
| 16 | fveq2 5599 |
. . . . . . 7
| |
| 17 | opeq1 3833 |
. . . . . . . . . . . 12
| |
| 18 | 17 | eceq1d 6679 |
. . . . . . . . . . 11
|
| 19 | 18 | fveq2d 5603 |
. . . . . . . . . 10
|
| 20 | 19 | breq2d 4071 |
. . . . . . . . 9
|
| 21 | 20 | abbidv 2325 |
. . . . . . . 8
|
| 22 | 19 | breq1d 4069 |
. . . . . . . . 9
|
| 23 | 22 | abbidv 2325 |
. . . . . . . 8
|
| 24 | 21, 23 | opeq12d 3841 |
. . . . . . 7
|
| 25 | 16, 24 | oveq12d 5985 |
. . . . . 6
|
| 26 | 25 | breq1d 4069 |
. . . . 5
|
| 27 | 26 | cbvrexv 2743 |
. . . 4
|
| 28 | fveq2 5599 |
. . . . . . 7
| |
| 29 | opeq1 3833 |
. . . . . . . . . . . 12
| |
| 30 | 29 | eceq1d 6679 |
. . . . . . . . . . 11
|
| 31 | 30 | fveq2d 5603 |
. . . . . . . . . 10
|
| 32 | 31 | breq2d 4071 |
. . . . . . . . 9
|
| 33 | 32 | abbidv 2325 |
. . . . . . . 8
|
| 34 | 31 | breq1d 4069 |
. . . . . . . . 9
|
| 35 | 34 | abbidv 2325 |
. . . . . . . 8
|
| 36 | 33, 35 | opeq12d 3841 |
. . . . . . 7
|
| 37 | 28, 36 | oveq12d 5985 |
. . . . . 6
|
| 38 | 37 | breq1d 4069 |
. . . . 5
|
| 39 | 38 | cbvrexv 2743 |
. . . 4
|
| 40 | 27, 39 | bitri 184 |
. . 3
|
| 41 | 40 | anbi2i 457 |
. 2
|
| 42 | 15, 41 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-2nd 6250 df-ec 6645 df-qs 6649 df-ni 7452 df-nqqs 7496 |
| This theorem is referenced by: caucvgprprlemopu 7847 caucvgprprlemupu 7848 caucvgprprlemdisj 7850 caucvgprprlemloc 7851 |
| Copyright terms: Public domain | W3C validator |