| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caucvgprprlemelu | Unicode version | ||
| Description: Lemma for caucvgprpr 7825. Membership in the upper cut of the putative limit. (Contributed by Jim Kingdon, 28-Jan-2021.) |
| Ref | Expression |
|---|---|
| caucvgprprlemell.lim |
|
| Ref | Expression |
|---|---|
| caucvgprprlemelu |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 4048 |
. . . . . . 7
| |
| 2 | 1 | abbidv 2323 |
. . . . . 6
|
| 3 | breq1 4047 |
. . . . . . 7
| |
| 4 | 3 | abbidv 2323 |
. . . . . 6
|
| 5 | 2, 4 | opeq12d 3827 |
. . . . 5
|
| 6 | 5 | breq2d 4056 |
. . . 4
|
| 7 | 6 | rexbidv 2507 |
. . 3
|
| 8 | caucvgprprlemell.lim |
. . . . 5
| |
| 9 | 8 | fveq2i 5579 |
. . . 4
|
| 10 | nqex 7476 |
. . . . . 6
| |
| 11 | 10 | rabex 4188 |
. . . . 5
|
| 12 | 10 | rabex 4188 |
. . . . 5
|
| 13 | 11, 12 | op2nd 6233 |
. . . 4
|
| 14 | 9, 13 | eqtri 2226 |
. . 3
|
| 15 | 7, 14 | elrab2 2932 |
. 2
|
| 16 | fveq2 5576 |
. . . . . . 7
| |
| 17 | opeq1 3819 |
. . . . . . . . . . . 12
| |
| 18 | 17 | eceq1d 6656 |
. . . . . . . . . . 11
|
| 19 | 18 | fveq2d 5580 |
. . . . . . . . . 10
|
| 20 | 19 | breq2d 4056 |
. . . . . . . . 9
|
| 21 | 20 | abbidv 2323 |
. . . . . . . 8
|
| 22 | 19 | breq1d 4054 |
. . . . . . . . 9
|
| 23 | 22 | abbidv 2323 |
. . . . . . . 8
|
| 24 | 21, 23 | opeq12d 3827 |
. . . . . . 7
|
| 25 | 16, 24 | oveq12d 5962 |
. . . . . 6
|
| 26 | 25 | breq1d 4054 |
. . . . 5
|
| 27 | 26 | cbvrexv 2739 |
. . . 4
|
| 28 | fveq2 5576 |
. . . . . . 7
| |
| 29 | opeq1 3819 |
. . . . . . . . . . . 12
| |
| 30 | 29 | eceq1d 6656 |
. . . . . . . . . . 11
|
| 31 | 30 | fveq2d 5580 |
. . . . . . . . . 10
|
| 32 | 31 | breq2d 4056 |
. . . . . . . . 9
|
| 33 | 32 | abbidv 2323 |
. . . . . . . 8
|
| 34 | 31 | breq1d 4054 |
. . . . . . . . 9
|
| 35 | 34 | abbidv 2323 |
. . . . . . . 8
|
| 36 | 33, 35 | opeq12d 3827 |
. . . . . . 7
|
| 37 | 28, 36 | oveq12d 5962 |
. . . . . 6
|
| 38 | 37 | breq1d 4054 |
. . . . 5
|
| 39 | 38 | cbvrexv 2739 |
. . . 4
|
| 40 | 27, 39 | bitri 184 |
. . 3
|
| 41 | 40 | anbi2i 457 |
. 2
|
| 42 | 15, 41 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-ov 5947 df-2nd 6227 df-ec 6622 df-qs 6626 df-ni 7417 df-nqqs 7461 |
| This theorem is referenced by: caucvgprprlemopu 7812 caucvgprprlemupu 7813 caucvgprprlemdisj 7815 caucvgprprlemloc 7816 |
| Copyright terms: Public domain | W3C validator |