| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > caucvgprprlemelu | Unicode version | ||
| Description: Lemma for caucvgprpr 7779. Membership in the upper cut of the putative limit. (Contributed by Jim Kingdon, 28-Jan-2021.) | 
| Ref | Expression | 
|---|---|
| caucvgprprlemell.lim | 
 | 
| Ref | Expression | 
|---|---|
| caucvgprprlemelu | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | breq2 4037 | 
. . . . . . 7
 | |
| 2 | 1 | abbidv 2314 | 
. . . . . 6
 | 
| 3 | breq1 4036 | 
. . . . . . 7
 | |
| 4 | 3 | abbidv 2314 | 
. . . . . 6
 | 
| 5 | 2, 4 | opeq12d 3816 | 
. . . . 5
 | 
| 6 | 5 | breq2d 4045 | 
. . . 4
 | 
| 7 | 6 | rexbidv 2498 | 
. . 3
 | 
| 8 | caucvgprprlemell.lim | 
. . . . 5
 | |
| 9 | 8 | fveq2i 5561 | 
. . . 4
 | 
| 10 | nqex 7430 | 
. . . . . 6
 | |
| 11 | 10 | rabex 4177 | 
. . . . 5
 | 
| 12 | 10 | rabex 4177 | 
. . . . 5
 | 
| 13 | 11, 12 | op2nd 6205 | 
. . . 4
 | 
| 14 | 9, 13 | eqtri 2217 | 
. . 3
 | 
| 15 | 7, 14 | elrab2 2923 | 
. 2
 | 
| 16 | fveq2 5558 | 
. . . . . . 7
 | |
| 17 | opeq1 3808 | 
. . . . . . . . . . . 12
 | |
| 18 | 17 | eceq1d 6628 | 
. . . . . . . . . . 11
 | 
| 19 | 18 | fveq2d 5562 | 
. . . . . . . . . 10
 | 
| 20 | 19 | breq2d 4045 | 
. . . . . . . . 9
 | 
| 21 | 20 | abbidv 2314 | 
. . . . . . . 8
 | 
| 22 | 19 | breq1d 4043 | 
. . . . . . . . 9
 | 
| 23 | 22 | abbidv 2314 | 
. . . . . . . 8
 | 
| 24 | 21, 23 | opeq12d 3816 | 
. . . . . . 7
 | 
| 25 | 16, 24 | oveq12d 5940 | 
. . . . . 6
 | 
| 26 | 25 | breq1d 4043 | 
. . . . 5
 | 
| 27 | 26 | cbvrexv 2730 | 
. . . 4
 | 
| 28 | fveq2 5558 | 
. . . . . . 7
 | |
| 29 | opeq1 3808 | 
. . . . . . . . . . . 12
 | |
| 30 | 29 | eceq1d 6628 | 
. . . . . . . . . . 11
 | 
| 31 | 30 | fveq2d 5562 | 
. . . . . . . . . 10
 | 
| 32 | 31 | breq2d 4045 | 
. . . . . . . . 9
 | 
| 33 | 32 | abbidv 2314 | 
. . . . . . . 8
 | 
| 34 | 31 | breq1d 4043 | 
. . . . . . . . 9
 | 
| 35 | 34 | abbidv 2314 | 
. . . . . . . 8
 | 
| 36 | 33, 35 | opeq12d 3816 | 
. . . . . . 7
 | 
| 37 | 28, 36 | oveq12d 5940 | 
. . . . . 6
 | 
| 38 | 37 | breq1d 4043 | 
. . . . 5
 | 
| 39 | 38 | cbvrexv 2730 | 
. . . 4
 | 
| 40 | 27, 39 | bitri 184 | 
. . 3
 | 
| 41 | 40 | anbi2i 457 | 
. 2
 | 
| 42 | 15, 41 | bitri 184 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-2nd 6199 df-ec 6594 df-qs 6598 df-ni 7371 df-nqqs 7415 | 
| This theorem is referenced by: caucvgprprlemopu 7766 caucvgprprlemupu 7767 caucvgprprlemdisj 7769 caucvgprprlemloc 7770 | 
| Copyright terms: Public domain | W3C validator |