ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemelu Unicode version

Theorem caucvgprprlemelu 7494
Description: Lemma for caucvgprpr 7520. Membership in the upper cut of the putative limit. (Contributed by Jim Kingdon, 28-Jan-2021.)
Hypothesis
Ref Expression
caucvgprprlemell.lim  |-  L  = 
<. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >.
Assertion
Ref Expression
caucvgprprlemelu  |-  ( X  e.  ( 2nd `  L
)  <->  ( X  e. 
Q.  /\  E. b  e.  N.  ( ( F `
 b )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  X } ,  { q  |  X  <Q  q } >. )
)
Distinct variable groups:    F, b    F, l, r    u, F, r    X, b, p    X, l, r, p    u, X, p    X, q, b    q,
l, r    u, q
Allowed substitution hints:    F( q, p)    L( u, r, q, p, b, l)

Proof of Theorem caucvgprprlemelu
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 breq2 3933 . . . . . . 7  |-  ( u  =  X  ->  (
p  <Q  u  <->  p  <Q  X ) )
21abbidv 2257 . . . . . 6  |-  ( u  =  X  ->  { p  |  p  <Q  u }  =  { p  |  p 
<Q  X } )
3 breq1 3932 . . . . . . 7  |-  ( u  =  X  ->  (
u  <Q  q  <->  X  <Q  q ) )
43abbidv 2257 . . . . . 6  |-  ( u  =  X  ->  { q  |  u  <Q  q }  =  { q  |  X  <Q  q } )
52, 4opeq12d 3713 . . . . 5  |-  ( u  =  X  ->  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >.  =  <. { p  |  p  <Q  X } ,  { q  |  X  <Q  q } >. )
65breq2d 3941 . . . 4  |-  ( u  =  X  ->  (
( ( F `  r )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  u } ,  {
q  |  u  <Q  q } >.  <->  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  X } ,  { q  |  X  <Q  q } >. )
)
76rexbidv 2438 . . 3  |-  ( u  =  X  ->  ( E. r  e.  N.  ( ( F `  r )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  u } ,  {
q  |  u  <Q  q } >.  <->  E. r  e.  N.  ( ( F `  r )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  X } ,  {
q  |  X  <Q  q } >. ) )
8 caucvgprprlemell.lim . . . . 5  |-  L  = 
<. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >.
98fveq2i 5424 . . . 4  |-  ( 2nd `  L )  =  ( 2nd `  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >. )
10 nqex 7171 . . . . . 6  |-  Q.  e.  _V
1110rabex 4072 . . . . 5  |-  { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
q } >.  <P  ( F `  r ) }  e.  _V
1210rabex 4072 . . . . 5  |-  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. }  e.  _V
1311, 12op2nd 6045 . . . 4  |-  ( 2nd `  <. { l  e. 
Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  r
) } ,  {
u  e.  Q.  |  E. r  e.  N.  ( ( F `  r )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  u } ,  {
q  |  u  <Q  q } >. } >. )  =  { u  e.  Q.  |  E. r  e.  N.  ( ( F `  r )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  u } ,  {
q  |  u  <Q  q } >. }
149, 13eqtri 2160 . . 3  |-  ( 2nd `  L )  =  {
u  e.  Q.  |  E. r  e.  N.  ( ( F `  r )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  u } ,  {
q  |  u  <Q  q } >. }
157, 14elrab2 2843 . 2  |-  ( X  e.  ( 2nd `  L
)  <->  ( X  e. 
Q.  /\  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  X } ,  { q  |  X  <Q  q } >. )
)
16 fveq2 5421 . . . . . . 7  |-  ( r  =  a  ->  ( F `  r )  =  ( F `  a ) )
17 opeq1 3705 . . . . . . . . . . . 12  |-  ( r  =  a  ->  <. r ,  1o >.  =  <. a ,  1o >. )
1817eceq1d 6465 . . . . . . . . . . 11  |-  ( r  =  a  ->  [ <. r ,  1o >. ]  ~Q  =  [ <. a ,  1o >. ]  ~Q  )
1918fveq2d 5425 . . . . . . . . . 10  |-  ( r  =  a  ->  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  =  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )
2019breq2d 3941 . . . . . . . . 9  |-  ( r  =  a  ->  (
p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <->  p  <Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) )
2120abbidv 2257 . . . . . . . 8  |-  ( r  =  a  ->  { p  |  p  <Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  ) }  =  { p  |  p  <Q  ( *Q
`  [ <. a ,  1o >. ]  ~Q  ) } )
2219breq1d 3939 . . . . . . . . 9  |-  ( r  =  a  ->  (
( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q  <->  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  <Q  q ) )
2322abbidv 2257 . . . . . . . 8  |-  ( r  =  a  ->  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q }  =  {
q  |  ( *Q
`  [ <. a ,  1o >. ]  ~Q  )  <Q  q } )
2421, 23opeq12d 3713 . . . . . . 7  |-  ( r  =  a  ->  <. { p  |  p  <Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >.  =  <. { p  |  p  <Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  <Q 
q } >. )
2516, 24oveq12d 5792 . . . . . 6  |-  ( r  =  a  ->  (
( F `  r
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  =  ( ( F `
 a )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  <Q  q } >. ) )
2625breq1d 3939 . . . . 5  |-  ( r  =  a  ->  (
( ( F `  r )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  X } ,  {
q  |  X  <Q  q } >.  <->  ( ( F `
 a )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  X } ,  { q  |  X  <Q  q } >. )
)
2726cbvrexv 2655 . . . 4  |-  ( E. r  e.  N.  (
( F `  r
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  X } ,  {
q  |  X  <Q  q } >.  <->  E. a  e.  N.  ( ( F `  a )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  X } ,  {
q  |  X  <Q  q } >. )
28 fveq2 5421 . . . . . . 7  |-  ( a  =  b  ->  ( F `  a )  =  ( F `  b ) )
29 opeq1 3705 . . . . . . . . . . . 12  |-  ( a  =  b  ->  <. a ,  1o >.  =  <. b ,  1o >. )
3029eceq1d 6465 . . . . . . . . . . 11  |-  ( a  =  b  ->  [ <. a ,  1o >. ]  ~Q  =  [ <. b ,  1o >. ]  ~Q  )
3130fveq2d 5425 . . . . . . . . . 10  |-  ( a  =  b  ->  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  =  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )
3231breq2d 3941 . . . . . . . . 9  |-  ( a  =  b  ->  (
p  <Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  <->  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) )
3332abbidv 2257 . . . . . . . 8  |-  ( a  =  b  ->  { p  |  p  <Q  ( *Q
`  [ <. a ,  1o >. ]  ~Q  ) }  =  { p  |  p  <Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  ) } )
3431breq1d 3939 . . . . . . . . 9  |-  ( a  =  b  ->  (
( *Q `  [ <. a ,  1o >. ]  ~Q  )  <Q  q  <->  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q ) )
3534abbidv 2257 . . . . . . . 8  |-  ( a  =  b  ->  { q  |  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  <Q 
q }  =  {
q  |  ( *Q
`  [ <. b ,  1o >. ]  ~Q  )  <Q  q } )
3633, 35opeq12d 3713 . . . . . . 7  |-  ( a  =  b  ->  <. { p  |  p  <Q  ( *Q
`  [ <. a ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  <Q 
q } >.  =  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )
3728, 36oveq12d 5792 . . . . . 6  |-  ( a  =  b  ->  (
( F `  a
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. a ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  <Q 
q } >. )  =  ( ( F `
 b )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. ) )
3837breq1d 3939 . . . . 5  |-  ( a  =  b  ->  (
( ( F `  a )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  X } ,  {
q  |  X  <Q  q } >.  <->  ( ( F `
 b )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  X } ,  { q  |  X  <Q  q } >. )
)
3938cbvrexv 2655 . . . 4  |-  ( E. a  e.  N.  (
( F `  a
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. a ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  X } ,  {
q  |  X  <Q  q } >.  <->  E. b  e.  N.  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  X } ,  {
q  |  X  <Q  q } >. )
4027, 39bitri 183 . . 3  |-  ( E. r  e.  N.  (
( F `  r
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  X } ,  {
q  |  X  <Q  q } >.  <->  E. b  e.  N.  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  X } ,  {
q  |  X  <Q  q } >. )
4140anbi2i 452 . 2  |-  ( ( X  e.  Q.  /\  E. r  e.  N.  (
( F `  r
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  X } ,  {
q  |  X  <Q  q } >. )  <->  ( X  e.  Q.  /\  E. b  e.  N.  ( ( F `
 b )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  X } ,  { q  |  X  <Q  q } >. )
)
4215, 41bitri 183 1  |-  ( X  e.  ( 2nd `  L
)  <->  ( X  e. 
Q.  /\  E. b  e.  N.  ( ( F `
 b )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  X } ,  { q  |  X  <Q  q } >. )
)
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   {cab 2125   E.wrex 2417   {crab 2420   <.cop 3530   class class class wbr 3929   ` cfv 5123  (class class class)co 5774   2ndc2nd 6037   1oc1o 6306   [cec 6427   N.cnpi 7080    ~Q ceq 7087   Q.cnq 7088    +Q cplq 7090   *Qcrq 7092    <Q cltq 7093    +P. cpp 7101    <P cltp 7103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-2nd 6039  df-ec 6431  df-qs 6435  df-ni 7112  df-nqqs 7156
This theorem is referenced by:  caucvgprprlemopu  7507  caucvgprprlemupu  7508  caucvgprprlemdisj  7510  caucvgprprlemloc  7511
  Copyright terms: Public domain W3C validator