Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > caucvgprprlemelu | Unicode version |
Description: Lemma for caucvgprpr 7626. Membership in the upper cut of the putative limit. (Contributed by Jim Kingdon, 28-Jan-2021.) |
Ref | Expression |
---|---|
caucvgprprlemell.lim |
Ref | Expression |
---|---|
caucvgprprlemelu |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 3969 | . . . . . . 7 | |
2 | 1 | abbidv 2275 | . . . . . 6 |
3 | breq1 3968 | . . . . . . 7 | |
4 | 3 | abbidv 2275 | . . . . . 6 |
5 | 2, 4 | opeq12d 3749 | . . . . 5 |
6 | 5 | breq2d 3977 | . . . 4 |
7 | 6 | rexbidv 2458 | . . 3 |
8 | caucvgprprlemell.lim | . . . . 5 | |
9 | 8 | fveq2i 5470 | . . . 4 |
10 | nqex 7277 | . . . . . 6 | |
11 | 10 | rabex 4108 | . . . . 5 |
12 | 10 | rabex 4108 | . . . . 5 |
13 | 11, 12 | op2nd 6092 | . . . 4 |
14 | 9, 13 | eqtri 2178 | . . 3 |
15 | 7, 14 | elrab2 2871 | . 2 |
16 | fveq2 5467 | . . . . . . 7 | |
17 | opeq1 3741 | . . . . . . . . . . . 12 | |
18 | 17 | eceq1d 6513 | . . . . . . . . . . 11 |
19 | 18 | fveq2d 5471 | . . . . . . . . . 10 |
20 | 19 | breq2d 3977 | . . . . . . . . 9 |
21 | 20 | abbidv 2275 | . . . . . . . 8 |
22 | 19 | breq1d 3975 | . . . . . . . . 9 |
23 | 22 | abbidv 2275 | . . . . . . . 8 |
24 | 21, 23 | opeq12d 3749 | . . . . . . 7 |
25 | 16, 24 | oveq12d 5839 | . . . . . 6 |
26 | 25 | breq1d 3975 | . . . . 5 |
27 | 26 | cbvrexv 2681 | . . . 4 |
28 | fveq2 5467 | . . . . . . 7 | |
29 | opeq1 3741 | . . . . . . . . . . . 12 | |
30 | 29 | eceq1d 6513 | . . . . . . . . . . 11 |
31 | 30 | fveq2d 5471 | . . . . . . . . . 10 |
32 | 31 | breq2d 3977 | . . . . . . . . 9 |
33 | 32 | abbidv 2275 | . . . . . . . 8 |
34 | 31 | breq1d 3975 | . . . . . . . . 9 |
35 | 34 | abbidv 2275 | . . . . . . . 8 |
36 | 33, 35 | opeq12d 3749 | . . . . . . 7 |
37 | 28, 36 | oveq12d 5839 | . . . . . 6 |
38 | 37 | breq1d 3975 | . . . . 5 |
39 | 38 | cbvrexv 2681 | . . . 4 |
40 | 27, 39 | bitri 183 | . . 3 |
41 | 40 | anbi2i 453 | . 2 |
42 | 15, 41 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1335 wcel 2128 cab 2143 wrex 2436 crab 2439 cop 3563 class class class wbr 3965 cfv 5169 (class class class)co 5821 c2nd 6084 c1o 6353 cec 6475 cnpi 7186 ceq 7193 cnq 7194 cplq 7196 crq 7198 cltq 7199 cpp 7207 cltp 7209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-iinf 4546 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4253 df-iom 4549 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-res 4597 df-ima 4598 df-iota 5134 df-fun 5171 df-fn 5172 df-f 5173 df-f1 5174 df-fo 5175 df-f1o 5176 df-fv 5177 df-ov 5824 df-2nd 6086 df-ec 6479 df-qs 6483 df-ni 7218 df-nqqs 7262 |
This theorem is referenced by: caucvgprprlemopu 7613 caucvgprprlemupu 7614 caucvgprprlemdisj 7616 caucvgprprlemloc 7617 |
Copyright terms: Public domain | W3C validator |