Proof of Theorem caucvgprprlemcbv
Step | Hyp | Ref
| Expression |
1 | | caucvgprpr.cau |
. 2
⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N
𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉)))) |
2 | | breq1 3985 |
. . . 4
⊢ (𝑛 = 𝑎 → (𝑛 <N 𝑘 ↔ 𝑎 <N 𝑘)) |
3 | | fveq2 5486 |
. . . . . 6
⊢ (𝑛 = 𝑎 → (𝐹‘𝑛) = (𝐹‘𝑎)) |
4 | | opeq1 3758 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑎 → 〈𝑛, 1o〉 = 〈𝑎,
1o〉) |
5 | 4 | eceq1d 6537 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑎 → [〈𝑛, 1o〉]
~Q = [〈𝑎, 1o〉]
~Q ) |
6 | 5 | fveq2d 5490 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑎 →
(*Q‘[〈𝑛, 1o〉]
~Q ) = (*Q‘[〈𝑎, 1o〉]
~Q )) |
7 | 6 | breq2d 3994 |
. . . . . . . . 9
⊢ (𝑛 = 𝑎 → (𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q ) ↔ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q ))) |
8 | 7 | abbidv 2284 |
. . . . . . . 8
⊢ (𝑛 = 𝑎 → {𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )} = {𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}) |
9 | 6 | breq1d 3992 |
. . . . . . . . 9
⊢ (𝑛 = 𝑎 →
((*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢 ↔
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢)) |
10 | 9 | abbidv 2284 |
. . . . . . . 8
⊢ (𝑛 = 𝑎 → {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢} = {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}) |
11 | 8, 10 | opeq12d 3766 |
. . . . . . 7
⊢ (𝑛 = 𝑎 → 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 = 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉) |
12 | 11 | oveq2d 5858 |
. . . . . 6
⊢ (𝑛 = 𝑎 → ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉) = ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉)) |
13 | 3, 12 | breq12d 3995 |
. . . . 5
⊢ (𝑛 = 𝑎 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉) ↔ (𝐹‘𝑎)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉))) |
14 | 3, 11 | oveq12d 5860 |
. . . . . 6
⊢ (𝑛 = 𝑎 → ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉) = ((𝐹‘𝑎) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉)) |
15 | 14 | breq2d 3994 |
. . . . 5
⊢ (𝑛 = 𝑎 → ((𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉) ↔ (𝐹‘𝑘)<P ((𝐹‘𝑎) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉))) |
16 | 13, 15 | anbi12d 465 |
. . . 4
⊢ (𝑛 = 𝑎 → (((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉)) ↔ ((𝐹‘𝑎)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑎) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉)))) |
17 | 2, 16 | imbi12d 233 |
. . 3
⊢ (𝑛 = 𝑎 → ((𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉))) ↔ (𝑎 <N 𝑘 → ((𝐹‘𝑎)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑎) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉))))) |
18 | | breq2 3986 |
. . . 4
⊢ (𝑘 = 𝑏 → (𝑎 <N 𝑘 ↔ 𝑎 <N 𝑏)) |
19 | | fveq2 5486 |
. . . . . . 7
⊢ (𝑘 = 𝑏 → (𝐹‘𝑘) = (𝐹‘𝑏)) |
20 | 19 | oveq1d 5857 |
. . . . . 6
⊢ (𝑘 = 𝑏 → ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉) = ((𝐹‘𝑏) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉)) |
21 | 20 | breq2d 3994 |
. . . . 5
⊢ (𝑘 = 𝑏 → ((𝐹‘𝑎)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉) ↔ (𝐹‘𝑎)<P ((𝐹‘𝑏) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉))) |
22 | 19 | breq1d 3992 |
. . . . 5
⊢ (𝑘 = 𝑏 → ((𝐹‘𝑘)<P ((𝐹‘𝑎) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉) ↔ (𝐹‘𝑏)<P ((𝐹‘𝑎) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉))) |
23 | 21, 22 | anbi12d 465 |
. . . 4
⊢ (𝑘 = 𝑏 → (((𝐹‘𝑎)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑎) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉)) ↔ ((𝐹‘𝑎)<P ((𝐹‘𝑏) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑏)<P ((𝐹‘𝑎) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉)))) |
24 | 18, 23 | imbi12d 233 |
. . 3
⊢ (𝑘 = 𝑏 → ((𝑎 <N 𝑘 → ((𝐹‘𝑎)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑎) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉))) ↔ (𝑎 <N 𝑏 → ((𝐹‘𝑎)<P ((𝐹‘𝑏) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑏)<P ((𝐹‘𝑎) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉))))) |
25 | 17, 24 | cbvral2v 2705 |
. 2
⊢
(∀𝑛 ∈
N ∀𝑘
∈ N (𝑛
<N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉))) ↔ ∀𝑎 ∈ N ∀𝑏 ∈ N (𝑎 <N
𝑏 → ((𝐹‘𝑎)<P ((𝐹‘𝑏) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑏)<P ((𝐹‘𝑎) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉)))) |
26 | 1, 25 | sylib 121 |
1
⊢ (𝜑 → ∀𝑎 ∈ N ∀𝑏 ∈ N (𝑎 <N
𝑏 → ((𝐹‘𝑎)<P ((𝐹‘𝑏) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑏)<P ((𝐹‘𝑎) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉)))) |