Proof of Theorem caucvgprprlemcbv
| Step | Hyp | Ref
 | Expression | 
| 1 |   | caucvgprpr.cau | 
. 2
⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N
𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉)))) | 
| 2 |   | breq1 4036 | 
. . . 4
⊢ (𝑛 = 𝑎 → (𝑛 <N 𝑘 ↔ 𝑎 <N 𝑘)) | 
| 3 |   | fveq2 5558 | 
. . . . . 6
⊢ (𝑛 = 𝑎 → (𝐹‘𝑛) = (𝐹‘𝑎)) | 
| 4 |   | opeq1 3808 | 
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑎 → 〈𝑛, 1o〉 = 〈𝑎,
1o〉) | 
| 5 | 4 | eceq1d 6628 | 
. . . . . . . . . . 11
⊢ (𝑛 = 𝑎 → [〈𝑛, 1o〉]
~Q = [〈𝑎, 1o〉]
~Q ) | 
| 6 | 5 | fveq2d 5562 | 
. . . . . . . . . 10
⊢ (𝑛 = 𝑎 →
(*Q‘[〈𝑛, 1o〉]
~Q ) = (*Q‘[〈𝑎, 1o〉]
~Q )) | 
| 7 | 6 | breq2d 4045 | 
. . . . . . . . 9
⊢ (𝑛 = 𝑎 → (𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q ) ↔ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q ))) | 
| 8 | 7 | abbidv 2314 | 
. . . . . . . 8
⊢ (𝑛 = 𝑎 → {𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )} = {𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}) | 
| 9 | 6 | breq1d 4043 | 
. . . . . . . . 9
⊢ (𝑛 = 𝑎 →
((*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢 ↔
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢)) | 
| 10 | 9 | abbidv 2314 | 
. . . . . . . 8
⊢ (𝑛 = 𝑎 → {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢} = {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}) | 
| 11 | 8, 10 | opeq12d 3816 | 
. . . . . . 7
⊢ (𝑛 = 𝑎 → 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 = 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉) | 
| 12 | 11 | oveq2d 5938 | 
. . . . . 6
⊢ (𝑛 = 𝑎 → ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉) = ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉)) | 
| 13 | 3, 12 | breq12d 4046 | 
. . . . 5
⊢ (𝑛 = 𝑎 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉) ↔ (𝐹‘𝑎)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉))) | 
| 14 | 3, 11 | oveq12d 5940 | 
. . . . . 6
⊢ (𝑛 = 𝑎 → ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉) = ((𝐹‘𝑎) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉)) | 
| 15 | 14 | breq2d 4045 | 
. . . . 5
⊢ (𝑛 = 𝑎 → ((𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉) ↔ (𝐹‘𝑘)<P ((𝐹‘𝑎) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉))) | 
| 16 | 13, 15 | anbi12d 473 | 
. . . 4
⊢ (𝑛 = 𝑎 → (((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉)) ↔ ((𝐹‘𝑎)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑎) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉)))) | 
| 17 | 2, 16 | imbi12d 234 | 
. . 3
⊢ (𝑛 = 𝑎 → ((𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉))) ↔ (𝑎 <N 𝑘 → ((𝐹‘𝑎)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑎) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉))))) | 
| 18 |   | breq2 4037 | 
. . . 4
⊢ (𝑘 = 𝑏 → (𝑎 <N 𝑘 ↔ 𝑎 <N 𝑏)) | 
| 19 |   | fveq2 5558 | 
. . . . . . 7
⊢ (𝑘 = 𝑏 → (𝐹‘𝑘) = (𝐹‘𝑏)) | 
| 20 | 19 | oveq1d 5937 | 
. . . . . 6
⊢ (𝑘 = 𝑏 → ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉) = ((𝐹‘𝑏) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉)) | 
| 21 | 20 | breq2d 4045 | 
. . . . 5
⊢ (𝑘 = 𝑏 → ((𝐹‘𝑎)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉) ↔ (𝐹‘𝑎)<P ((𝐹‘𝑏) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉))) | 
| 22 | 19 | breq1d 4043 | 
. . . . 5
⊢ (𝑘 = 𝑏 → ((𝐹‘𝑘)<P ((𝐹‘𝑎) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉) ↔ (𝐹‘𝑏)<P ((𝐹‘𝑎) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉))) | 
| 23 | 21, 22 | anbi12d 473 | 
. . . 4
⊢ (𝑘 = 𝑏 → (((𝐹‘𝑎)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑎) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉)) ↔ ((𝐹‘𝑎)<P ((𝐹‘𝑏) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑏)<P ((𝐹‘𝑎) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉)))) | 
| 24 | 18, 23 | imbi12d 234 | 
. . 3
⊢ (𝑘 = 𝑏 → ((𝑎 <N 𝑘 → ((𝐹‘𝑎)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑎) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉))) ↔ (𝑎 <N 𝑏 → ((𝐹‘𝑎)<P ((𝐹‘𝑏) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑏)<P ((𝐹‘𝑎) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉))))) | 
| 25 | 17, 24 | cbvral2v 2742 | 
. 2
⊢
(∀𝑛 ∈
N ∀𝑘
∈ N (𝑛
<N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉))) ↔ ∀𝑎 ∈ N ∀𝑏 ∈ N (𝑎 <N
𝑏 → ((𝐹‘𝑎)<P ((𝐹‘𝑏) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑏)<P ((𝐹‘𝑎) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉)))) | 
| 26 | 1, 25 | sylib 122 | 
1
⊢ (𝜑 → ∀𝑎 ∈ N ∀𝑏 ∈ N (𝑎 <N
𝑏 → ((𝐹‘𝑎)<P ((𝐹‘𝑏) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑏)<P ((𝐹‘𝑎) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉)))) |