ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnreseql Unicode version

Theorem fnreseql 5669
Description: Two functions are equal on a subset iff their equalizer contains that subset. (Contributed by Stefan O'Rear, 7-Mar-2015.)
Assertion
Ref Expression
fnreseql  |-  ( ( F  Fn  A  /\  G  Fn  A  /\  X  C_  A )  -> 
( ( F  |`  X )  =  ( G  |`  X )  <->  X 
C_  dom  ( F  i^i  G ) ) )

Proof of Theorem fnreseql
StepHypRef Expression
1 fnssres 5368 . . . 4  |-  ( ( F  Fn  A  /\  X  C_  A )  -> 
( F  |`  X )  Fn  X )
213adant2 1018 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  A  /\  X  C_  A )  -> 
( F  |`  X )  Fn  X )
3 fnssres 5368 . . . 4  |-  ( ( G  Fn  A  /\  X  C_  A )  -> 
( G  |`  X )  Fn  X )
433adant1 1017 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  A  /\  X  C_  A )  -> 
( G  |`  X )  Fn  X )
5 fneqeql 5667 . . 3  |-  ( ( ( F  |`  X )  Fn  X  /\  ( G  |`  X )  Fn  X )  ->  (
( F  |`  X )  =  ( G  |`  X )  <->  dom  ( ( F  |`  X )  i^i  ( G  |`  X ) )  =  X ) )
62, 4, 5syl2anc 411 . 2  |-  ( ( F  Fn  A  /\  G  Fn  A  /\  X  C_  A )  -> 
( ( F  |`  X )  =  ( G  |`  X )  <->  dom  ( ( F  |`  X )  i^i  ( G  |`  X ) )  =  X ) )
7 resindir 4959 . . . . . 6  |-  ( ( F  i^i  G )  |`  X )  =  ( ( F  |`  X )  i^i  ( G  |`  X ) )
87dmeqi 4864 . . . . 5  |-  dom  (
( F  i^i  G
)  |`  X )  =  dom  ( ( F  |`  X )  i^i  ( G  |`  X ) )
9 dmres 4964 . . . . 5  |-  dom  (
( F  i^i  G
)  |`  X )  =  ( X  i^i  dom  ( F  i^i  G ) )
108, 9eqtr3i 2216 . . . 4  |-  dom  (
( F  |`  X )  i^i  ( G  |`  X ) )  =  ( X  i^i  dom  ( F  i^i  G ) )
1110eqeq1i 2201 . . 3  |-  ( dom  ( ( F  |`  X )  i^i  ( G  |`  X ) )  =  X  <->  ( X  i^i  dom  ( F  i^i  G ) )  =  X )
12 df-ss 3167 . . 3  |-  ( X 
C_  dom  ( F  i^i  G )  <->  ( X  i^i  dom  ( F  i^i  G ) )  =  X )
1311, 12bitr4i 187 . 2  |-  ( dom  ( ( F  |`  X )  i^i  ( G  |`  X ) )  =  X  <->  X  C_  dom  ( F  i^i  G ) )
146, 13bitrdi 196 1  |-  ( ( F  Fn  A  /\  G  Fn  A  /\  X  C_  A )  -> 
( ( F  |`  X )  =  ( G  |`  X )  <->  X 
C_  dom  ( F  i^i  G ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 980    = wceq 1364    i^i cin 3153    C_ wss 3154   dom cdm 4660    |` cres 4662    Fn wfn 5250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-res 4672  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator