ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coexg GIF version

Theorem coexg 5269
Description: The composition of two sets is a set. (Contributed by NM, 19-Mar-1998.)
Assertion
Ref Expression
coexg ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)

Proof of Theorem coexg
StepHypRef Expression
1 cossxp 5247 . 2 (𝐴𝐵) ⊆ (dom 𝐵 × ran 𝐴)
2 dmexg 4984 . . 3 (𝐵𝑊 → dom 𝐵 ∈ V)
3 rnexg 4985 . . 3 (𝐴𝑉 → ran 𝐴 ∈ V)
4 xpexg 4830 . . 3 ((dom 𝐵 ∈ V ∧ ran 𝐴 ∈ V) → (dom 𝐵 × ran 𝐴) ∈ V)
52, 3, 4syl2anr 290 . 2 ((𝐴𝑉𝐵𝑊) → (dom 𝐵 × ran 𝐴) ∈ V)
6 ssexg 4222 . 2 (((𝐴𝐵) ⊆ (dom 𝐵 × ran 𝐴) ∧ (dom 𝐵 × ran 𝐴) ∈ V) → (𝐴𝐵) ∈ V)
71, 5, 6sylancr 414 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2200  Vcvv 2799  wss 3197   × cxp 4714  dom cdm 4716  ran crn 4717  ccom 4720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727
This theorem is referenced by:  coex  5270  seqf1oglem2  10729  seqf1og  10730  gsumwmhm  13517  gsumfzreidx  13860  gsumfzmhm  13866  znval  14585  znle  14586  znbaslemnn  14588  climcncf  15243
  Copyright terms: Public domain W3C validator