ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coexg GIF version

Theorem coexg 5210
Description: The composition of two sets is a set. (Contributed by NM, 19-Mar-1998.)
Assertion
Ref Expression
coexg ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)

Proof of Theorem coexg
StepHypRef Expression
1 cossxp 5188 . 2 (𝐴𝐵) ⊆ (dom 𝐵 × ran 𝐴)
2 dmexg 4926 . . 3 (𝐵𝑊 → dom 𝐵 ∈ V)
3 rnexg 4927 . . 3 (𝐴𝑉 → ran 𝐴 ∈ V)
4 xpexg 4773 . . 3 ((dom 𝐵 ∈ V ∧ ran 𝐴 ∈ V) → (dom 𝐵 × ran 𝐴) ∈ V)
52, 3, 4syl2anr 290 . 2 ((𝐴𝑉𝐵𝑊) → (dom 𝐵 × ran 𝐴) ∈ V)
6 ssexg 4168 . 2 (((𝐴𝐵) ⊆ (dom 𝐵 × ran 𝐴) ∧ (dom 𝐵 × ran 𝐴) ∈ V) → (𝐴𝐵) ∈ V)
71, 5, 6sylancr 414 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2164  Vcvv 2760  wss 3153   × cxp 4657  dom cdm 4659  ran crn 4660  ccom 4663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670
This theorem is referenced by:  coex  5211  seqf1oglem2  10591  seqf1og  10592  gsumwmhm  13070  gsumfzreidx  13407  gsumfzmhm  13413  znval  14124  znle  14125  znbaslemnn  14127  climcncf  14739
  Copyright terms: Public domain W3C validator