ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coexg GIF version

Theorem coexg 5235
Description: The composition of two sets is a set. (Contributed by NM, 19-Mar-1998.)
Assertion
Ref Expression
coexg ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)

Proof of Theorem coexg
StepHypRef Expression
1 cossxp 5213 . 2 (𝐴𝐵) ⊆ (dom 𝐵 × ran 𝐴)
2 dmexg 4950 . . 3 (𝐵𝑊 → dom 𝐵 ∈ V)
3 rnexg 4951 . . 3 (𝐴𝑉 → ran 𝐴 ∈ V)
4 xpexg 4796 . . 3 ((dom 𝐵 ∈ V ∧ ran 𝐴 ∈ V) → (dom 𝐵 × ran 𝐴) ∈ V)
52, 3, 4syl2anr 290 . 2 ((𝐴𝑉𝐵𝑊) → (dom 𝐵 × ran 𝐴) ∈ V)
6 ssexg 4190 . 2 (((𝐴𝐵) ⊆ (dom 𝐵 × ran 𝐴) ∧ (dom 𝐵 × ran 𝐴) ∈ V) → (𝐴𝐵) ∈ V)
71, 5, 6sylancr 414 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2177  Vcvv 2773  wss 3170   × cxp 4680  dom cdm 4682  ran crn 4683  ccom 4686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4169  ax-pow 4225  ax-pr 4260  ax-un 4487
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-br 4051  df-opab 4113  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693
This theorem is referenced by:  coex  5236  seqf1oglem2  10682  seqf1og  10683  gsumwmhm  13400  gsumfzreidx  13743  gsumfzmhm  13749  znval  14468  znle  14469  znbaslemnn  14471  climcncf  15126
  Copyright terms: Public domain W3C validator