ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climcncf Unicode version

Theorem climcncf 11906
Description: Image of a limit under a continuous map. (Contributed by Mario Carneiro, 7-Apr-2015.)
Hypotheses
Ref Expression
climcncf.1  |-  Z  =  ( ZZ>= `  M )
climcncf.2  |-  ( ph  ->  M  e.  ZZ )
climcncf.4  |-  ( ph  ->  F  e.  ( A
-cn-> B ) )
climcncf.5  |-  ( ph  ->  G : Z --> A )
climcncf.6  |-  ( ph  ->  G  ~~>  D )
climcncf.7  |-  ( ph  ->  D  e.  A )
Assertion
Ref Expression
climcncf  |-  ( ph  ->  ( F  o.  G
)  ~~>  ( F `  D ) )

Proof of Theorem climcncf
Dummy variables  y  z  x  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climcncf.1 . 2  |-  Z  =  ( ZZ>= `  M )
2 climcncf.2 . 2  |-  ( ph  ->  M  e.  ZZ )
3 climcncf.7 . 2  |-  ( ph  ->  D  e.  A )
4 climcncf.4 . . . . 5  |-  ( ph  ->  F  e.  ( A
-cn-> B ) )
5 cncff 11899 . . . . 5  |-  ( F  e.  ( A -cn-> B )  ->  F : A
--> B )
64, 5syl 14 . . . 4  |-  ( ph  ->  F : A --> B )
76ffvelrnda 5448 . . 3  |-  ( (
ph  /\  z  e.  A )  ->  ( F `  z )  e.  B )
8 cncfrss2 11898 . . . . 5  |-  ( F  e.  ( A -cn-> B )  ->  B  C_  CC )
94, 8syl 14 . . . 4  |-  ( ph  ->  B  C_  CC )
109sselda 3026 . . 3  |-  ( (
ph  /\  ( F `  z )  e.  B
)  ->  ( F `  z )  e.  CC )
117, 10syldan 277 . 2  |-  ( (
ph  /\  z  e.  A )  ->  ( F `  z )  e.  CC )
12 climcncf.6 . 2  |-  ( ph  ->  G  ~~>  D )
13 climcncf.5 . . . 4  |-  ( ph  ->  G : Z --> A )
14 zex 8813 . . . . . 6  |-  ZZ  e.  _V
15 uzssz 9092 . . . . . 6  |-  ( ZZ>= `  M )  C_  ZZ
1614, 15ssexi 3983 . . . . 5  |-  ( ZZ>= `  M )  e.  _V
171, 16eqeltri 2161 . . . 4  |-  Z  e. 
_V
18 fex 5538 . . . 4  |-  ( ( G : Z --> A  /\  Z  e.  _V )  ->  G  e.  _V )
1913, 17, 18sylancl 405 . . 3  |-  ( ph  ->  G  e.  _V )
20 coexg 4988 . . 3  |-  ( ( F  e.  ( A
-cn-> B )  /\  G  e.  _V )  ->  ( F  o.  G )  e.  _V )
214, 19, 20syl2anc 404 . 2  |-  ( ph  ->  ( F  o.  G
)  e.  _V )
22 cncfi 11900 . . . . 5  |-  ( ( F  e.  ( A
-cn-> B )  /\  D  e.  A  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  A  ( ( abs `  ( z  -  D
) )  <  y  ->  ( abs `  (
( F `  z
)  -  ( F `
 D ) ) )  <  x ) )
23223expia 1146 . . . 4  |-  ( ( F  e.  ( A
-cn-> B )  /\  D  e.  A )  ->  (
x  e.  RR+  ->  E. y  e.  RR+  A. z  e.  A  ( ( abs `  ( z  -  D ) )  < 
y  ->  ( abs `  ( ( F `  z )  -  ( F `  D )
) )  <  x
) ) )
244, 3, 23syl2anc 404 . . 3  |-  ( ph  ->  ( x  e.  RR+  ->  E. y  e.  RR+  A. z  e.  A  ( ( abs `  (
z  -  D ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 D ) ) )  <  x ) ) )
2524imp 123 . 2  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  A  ( ( abs `  ( z  -  D
) )  <  y  ->  ( abs `  (
( F `  z
)  -  ( F `
 D ) ) )  <  x ) )
2613ffvelrnda 5448 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  A )
27 fvco3 5388 . . 3  |-  ( ( G : Z --> A  /\  k  e.  Z )  ->  ( ( F  o.  G ) `  k
)  =  ( F `
 ( G `  k ) ) )
2813, 27sylan 278 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  (
( F  o.  G
) `  k )  =  ( F `  ( G `  k ) ) )
291, 2, 3, 11, 12, 21, 25, 26, 28climcn1 10751 1  |-  ( ph  ->  ( F  o.  G
)  ~~>  ( F `  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1290    e. wcel 1439   A.wral 2360   E.wrex 2361   _Vcvv 2620    C_ wss 3000   class class class wbr 3851    o. ccom 4455   -->wf 5024   ` cfv 5028  (class class class)co 5666   CCcc 7402    < clt 7576    - cmin 7707   ZZcz 8804   ZZ>=cuz 9073   RR+crp 9188   abscabs 10484    ~~> cli 10720   -cn->ccncf 11892
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3960  ax-sep 3963  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-cnex 7490  ax-resscn 7491  ax-1cn 7492  ax-1re 7493  ax-icn 7494  ax-addcl 7495  ax-addrcl 7496  ax-mulcl 7497  ax-mulrcl 7498  ax-addcom 7499  ax-mulcom 7500  ax-addass 7501  ax-mulass 7502  ax-distr 7503  ax-i2m1 7504  ax-0lt1 7505  ax-1rid 7506  ax-0id 7507  ax-rnegex 7508  ax-precex 7509  ax-cnre 7510  ax-pre-ltirr 7511  ax-pre-ltwlin 7512  ax-pre-lttrn 7513  ax-pre-apti 7514  ax-pre-ltadd 7515  ax-pre-mulgt0 7516  ax-pre-mulext 7517
This theorem depends on definitions:  df-bi 116  df-dc 782  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rmo 2368  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-if 3398  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-iun 3738  df-br 3852  df-opab 3906  df-mpt 3907  df-id 4129  df-po 4132  df-iso 4133  df-xp 4457  df-rel 4458  df-cnv 4459  df-co 4460  df-dm 4461  df-rn 4462  df-res 4463  df-ima 4464  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-f1 5033  df-fo 5034  df-f1o 5035  df-fv 5036  df-riota 5622  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-map 6421  df-pnf 7578  df-mnf 7579  df-xr 7580  df-ltxr 7581  df-le 7582  df-sub 7709  df-neg 7710  df-reap 8106  df-ap 8113  df-div 8194  df-inn 8477  df-2 8535  df-n0 8728  df-z 8805  df-uz 9074  df-cj 10330  df-re 10331  df-im 10332  df-rsqrt 10485  df-abs 10486  df-clim 10721  df-cncf 11893
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator