ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climcncf Unicode version

Theorem climcncf 14110
Description: Image of a limit under a continuous map. (Contributed by Mario Carneiro, 7-Apr-2015.)
Hypotheses
Ref Expression
climcncf.1  |-  Z  =  ( ZZ>= `  M )
climcncf.2  |-  ( ph  ->  M  e.  ZZ )
climcncf.4  |-  ( ph  ->  F  e.  ( A
-cn-> B ) )
climcncf.5  |-  ( ph  ->  G : Z --> A )
climcncf.6  |-  ( ph  ->  G  ~~>  D )
climcncf.7  |-  ( ph  ->  D  e.  A )
Assertion
Ref Expression
climcncf  |-  ( ph  ->  ( F  o.  G
)  ~~>  ( F `  D ) )

Proof of Theorem climcncf
Dummy variables  y  z  x  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climcncf.1 . 2  |-  Z  =  ( ZZ>= `  M )
2 climcncf.2 . 2  |-  ( ph  ->  M  e.  ZZ )
3 climcncf.7 . 2  |-  ( ph  ->  D  e.  A )
4 climcncf.4 . . . . 5  |-  ( ph  ->  F  e.  ( A
-cn-> B ) )
5 cncff 14103 . . . . 5  |-  ( F  e.  ( A -cn-> B )  ->  F : A
--> B )
64, 5syl 14 . . . 4  |-  ( ph  ->  F : A --> B )
76ffvelcdmda 5653 . . 3  |-  ( (
ph  /\  z  e.  A )  ->  ( F `  z )  e.  B )
8 cncfrss2 14102 . . . . 5  |-  ( F  e.  ( A -cn-> B )  ->  B  C_  CC )
94, 8syl 14 . . . 4  |-  ( ph  ->  B  C_  CC )
109sselda 3157 . . 3  |-  ( (
ph  /\  ( F `  z )  e.  B
)  ->  ( F `  z )  e.  CC )
117, 10syldan 282 . 2  |-  ( (
ph  /\  z  e.  A )  ->  ( F `  z )  e.  CC )
12 climcncf.6 . 2  |-  ( ph  ->  G  ~~>  D )
13 climcncf.5 . . . 4  |-  ( ph  ->  G : Z --> A )
14 zex 9264 . . . . . 6  |-  ZZ  e.  _V
15 uzssz 9549 . . . . . 6  |-  ( ZZ>= `  M )  C_  ZZ
1614, 15ssexi 4143 . . . . 5  |-  ( ZZ>= `  M )  e.  _V
171, 16eqeltri 2250 . . . 4  |-  Z  e. 
_V
18 fex 5747 . . . 4  |-  ( ( G : Z --> A  /\  Z  e.  _V )  ->  G  e.  _V )
1913, 17, 18sylancl 413 . . 3  |-  ( ph  ->  G  e.  _V )
20 coexg 5175 . . 3  |-  ( ( F  e.  ( A
-cn-> B )  /\  G  e.  _V )  ->  ( F  o.  G )  e.  _V )
214, 19, 20syl2anc 411 . 2  |-  ( ph  ->  ( F  o.  G
)  e.  _V )
22 cncfi 14104 . . . . 5  |-  ( ( F  e.  ( A
-cn-> B )  /\  D  e.  A  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  A  ( ( abs `  ( z  -  D
) )  <  y  ->  ( abs `  (
( F `  z
)  -  ( F `
 D ) ) )  <  x ) )
23223expia 1205 . . . 4  |-  ( ( F  e.  ( A
-cn-> B )  /\  D  e.  A )  ->  (
x  e.  RR+  ->  E. y  e.  RR+  A. z  e.  A  ( ( abs `  ( z  -  D ) )  < 
y  ->  ( abs `  ( ( F `  z )  -  ( F `  D )
) )  <  x
) ) )
244, 3, 23syl2anc 411 . . 3  |-  ( ph  ->  ( x  e.  RR+  ->  E. y  e.  RR+  A. z  e.  A  ( ( abs `  (
z  -  D ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 D ) ) )  <  x ) ) )
2524imp 124 . 2  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  A  ( ( abs `  ( z  -  D
) )  <  y  ->  ( abs `  (
( F `  z
)  -  ( F `
 D ) ) )  <  x ) )
2613ffvelcdmda 5653 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  A )
27 fvco3 5589 . . 3  |-  ( ( G : Z --> A  /\  k  e.  Z )  ->  ( ( F  o.  G ) `  k
)  =  ( F `
 ( G `  k ) ) )
2813, 27sylan 283 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  (
( F  o.  G
) `  k )  =  ( F `  ( G `  k ) ) )
291, 2, 3, 11, 12, 21, 25, 26, 28climcn1 11318 1  |-  ( ph  ->  ( F  o.  G
)  ~~>  ( F `  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456   _Vcvv 2739    C_ wss 3131   class class class wbr 4005    o. ccom 4632   -->wf 5214   ` cfv 5218  (class class class)co 5877   CCcc 7811    < clt 7994    - cmin 8130   ZZcz 9255   ZZ>=cuz 9530   RR+crp 9655   abscabs 11008    ~~> cli 11288   -cn->ccncf 14096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-po 4298  df-iso 4299  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-map 6652  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-n0 9179  df-z 9256  df-uz 9531  df-cj 10853  df-re 10854  df-im 10855  df-rsqrt 11009  df-abs 11010  df-clim 11289  df-cncf 14097
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator