ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climcncf Unicode version

Theorem climcncf 15171
Description: Image of a limit under a continuous map. (Contributed by Mario Carneiro, 7-Apr-2015.)
Hypotheses
Ref Expression
climcncf.1  |-  Z  =  ( ZZ>= `  M )
climcncf.2  |-  ( ph  ->  M  e.  ZZ )
climcncf.4  |-  ( ph  ->  F  e.  ( A
-cn-> B ) )
climcncf.5  |-  ( ph  ->  G : Z --> A )
climcncf.6  |-  ( ph  ->  G  ~~>  D )
climcncf.7  |-  ( ph  ->  D  e.  A )
Assertion
Ref Expression
climcncf  |-  ( ph  ->  ( F  o.  G
)  ~~>  ( F `  D ) )

Proof of Theorem climcncf
Dummy variables  y  z  x  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climcncf.1 . 2  |-  Z  =  ( ZZ>= `  M )
2 climcncf.2 . 2  |-  ( ph  ->  M  e.  ZZ )
3 climcncf.7 . 2  |-  ( ph  ->  D  e.  A )
4 climcncf.4 . . . . 5  |-  ( ph  ->  F  e.  ( A
-cn-> B ) )
5 cncff 15164 . . . . 5  |-  ( F  e.  ( A -cn-> B )  ->  F : A
--> B )
64, 5syl 14 . . . 4  |-  ( ph  ->  F : A --> B )
76ffvelcdmda 5738 . . 3  |-  ( (
ph  /\  z  e.  A )  ->  ( F `  z )  e.  B )
8 cncfrss2 15163 . . . . 5  |-  ( F  e.  ( A -cn-> B )  ->  B  C_  CC )
94, 8syl 14 . . . 4  |-  ( ph  ->  B  C_  CC )
109sselda 3201 . . 3  |-  ( (
ph  /\  ( F `  z )  e.  B
)  ->  ( F `  z )  e.  CC )
117, 10syldan 282 . 2  |-  ( (
ph  /\  z  e.  A )  ->  ( F `  z )  e.  CC )
12 climcncf.6 . 2  |-  ( ph  ->  G  ~~>  D )
13 climcncf.5 . . . 4  |-  ( ph  ->  G : Z --> A )
14 zex 9416 . . . . . 6  |-  ZZ  e.  _V
15 uzssz 9703 . . . . . 6  |-  ( ZZ>= `  M )  C_  ZZ
1614, 15ssexi 4198 . . . . 5  |-  ( ZZ>= `  M )  e.  _V
171, 16eqeltri 2280 . . . 4  |-  Z  e. 
_V
18 fex 5836 . . . 4  |-  ( ( G : Z --> A  /\  Z  e.  _V )  ->  G  e.  _V )
1913, 17, 18sylancl 413 . . 3  |-  ( ph  ->  G  e.  _V )
20 coexg 5246 . . 3  |-  ( ( F  e.  ( A
-cn-> B )  /\  G  e.  _V )  ->  ( F  o.  G )  e.  _V )
214, 19, 20syl2anc 411 . 2  |-  ( ph  ->  ( F  o.  G
)  e.  _V )
22 cncfi 15165 . . . . 5  |-  ( ( F  e.  ( A
-cn-> B )  /\  D  e.  A  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  A  ( ( abs `  ( z  -  D
) )  <  y  ->  ( abs `  (
( F `  z
)  -  ( F `
 D ) ) )  <  x ) )
23223expia 1208 . . . 4  |-  ( ( F  e.  ( A
-cn-> B )  /\  D  e.  A )  ->  (
x  e.  RR+  ->  E. y  e.  RR+  A. z  e.  A  ( ( abs `  ( z  -  D ) )  < 
y  ->  ( abs `  ( ( F `  z )  -  ( F `  D )
) )  <  x
) ) )
244, 3, 23syl2anc 411 . . 3  |-  ( ph  ->  ( x  e.  RR+  ->  E. y  e.  RR+  A. z  e.  A  ( ( abs `  (
z  -  D ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 D ) ) )  <  x ) ) )
2524imp 124 . 2  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  A  ( ( abs `  ( z  -  D
) )  <  y  ->  ( abs `  (
( F `  z
)  -  ( F `
 D ) ) )  <  x ) )
2613ffvelcdmda 5738 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  A )
27 fvco3 5673 . . 3  |-  ( ( G : Z --> A  /\  k  e.  Z )  ->  ( ( F  o.  G ) `  k
)  =  ( F `
 ( G `  k ) ) )
2813, 27sylan 283 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  (
( F  o.  G
) `  k )  =  ( F `  ( G `  k ) ) )
291, 2, 3, 11, 12, 21, 25, 26, 28climcn1 11734 1  |-  ( ph  ->  ( F  o.  G
)  ~~>  ( F `  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2178   A.wral 2486   E.wrex 2487   _Vcvv 2776    C_ wss 3174   class class class wbr 4059    o. ccom 4697   -->wf 5286   ` cfv 5290  (class class class)co 5967   CCcc 7958    < clt 8142    - cmin 8278   ZZcz 9407   ZZ>=cuz 9683   RR+crp 9810   abscabs 11423    ~~> cli 11704   -cn->ccncf 15157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-po 4361  df-iso 4362  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-map 6760  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-n0 9331  df-z 9408  df-uz 9684  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-clim 11705  df-cncf 15158
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator