ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cofmpt Unicode version

Theorem cofmpt 5633
Description: Express composition of a maps-to function with another function in a maps-to notation. (Contributed by Thierry Arnoux, 29-Jun-2017.)
Hypotheses
Ref Expression
cofmpt.1  |-  ( ph  ->  F : C --> D )
cofmpt.2  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  C )
Assertion
Ref Expression
cofmpt  |-  ( ph  ->  ( F  o.  (
x  e.  A  |->  B ) )  =  ( x  e.  A  |->  ( F `  B ) ) )
Distinct variable groups:    x, A    x, C    x, F    ph, x
Allowed substitution hints:    B( x)    D( x)

Proof of Theorem cofmpt
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 cofmpt.2 . 2  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  C )
2 eqidd 2158 . 2  |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B ) )
3 cofmpt.1 . . 3  |-  ( ph  ->  F : C --> D )
43feqmptd 5518 . 2  |-  ( ph  ->  F  =  ( y  e.  C  |->  ( F `
 y ) ) )
5 fveq2 5465 . 2  |-  ( y  =  B  ->  ( F `  y )  =  ( F `  B ) )
61, 2, 4, 5fmptco 5630 1  |-  ( ph  ->  ( F  o.  (
x  e.  A  |->  B ) )  =  ( x  e.  A  |->  ( F `  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1335    e. wcel 2128    |-> cmpt 4025    o. ccom 4587   -->wf 5163   ` cfv 5167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4134  ax-pr 4168
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4252  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-fv 5175
This theorem is referenced by:  dvcjbr  13032  dvmptcjx  13046  dvef  13048
  Copyright terms: Public domain W3C validator