ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cofmpt Unicode version

Theorem cofmpt 5654
Description: Express composition of a maps-to function with another function in a maps-to notation. (Contributed by Thierry Arnoux, 29-Jun-2017.)
Hypotheses
Ref Expression
cofmpt.1  |-  ( ph  ->  F : C --> D )
cofmpt.2  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  C )
Assertion
Ref Expression
cofmpt  |-  ( ph  ->  ( F  o.  (
x  e.  A  |->  B ) )  =  ( x  e.  A  |->  ( F `  B ) ) )
Distinct variable groups:    x, A    x, C    x, F    ph, x
Allowed substitution hints:    B( x)    D( x)

Proof of Theorem cofmpt
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 cofmpt.2 . 2  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  C )
2 eqidd 2166 . 2  |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B ) )
3 cofmpt.1 . . 3  |-  ( ph  ->  F : C --> D )
43feqmptd 5539 . 2  |-  ( ph  ->  F  =  ( y  e.  C  |->  ( F `
 y ) ) )
5 fveq2 5486 . 2  |-  ( y  =  B  ->  ( F `  y )  =  ( F `  B ) )
61, 2, 4, 5fmptco 5651 1  |-  ( ph  ->  ( F  o.  (
x  e.  A  |->  B ) )  =  ( x  e.  A  |->  ( F `  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136    |-> cmpt 4043    o. ccom 4608   -->wf 5184   ` cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196
This theorem is referenced by:  dvcjbr  13312  dvmptcjx  13326  dvef  13328
  Copyright terms: Public domain W3C validator