ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cofmpt Unicode version

Theorem cofmpt 5772
Description: Express composition of a maps-to function with another function in a maps-to notation. (Contributed by Thierry Arnoux, 29-Jun-2017.)
Hypotheses
Ref Expression
cofmpt.1  |-  ( ph  ->  F : C --> D )
cofmpt.2  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  C )
Assertion
Ref Expression
cofmpt  |-  ( ph  ->  ( F  o.  (
x  e.  A  |->  B ) )  =  ( x  e.  A  |->  ( F `  B ) ) )
Distinct variable groups:    x, A    x, C    x, F    ph, x
Allowed substitution hints:    B( x)    D( x)

Proof of Theorem cofmpt
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 cofmpt.2 . 2  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  C )
2 eqidd 2208 . 2  |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B ) )
3 cofmpt.1 . . 3  |-  ( ph  ->  F : C --> D )
43feqmptd 5655 . 2  |-  ( ph  ->  F  =  ( y  e.  C  |->  ( F `
 y ) ) )
5 fveq2 5599 . 2  |-  ( y  =  B  ->  ( F `  y )  =  ( F `  B ) )
61, 2, 4, 5fmptco 5769 1  |-  ( ph  ->  ( F  o.  (
x  e.  A  |->  B ) )  =  ( x  e.  A  |->  ( F `  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178    |-> cmpt 4121    o. ccom 4697   -->wf 5286   ` cfv 5290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298
This theorem is referenced by:  dvcjbr  15295  dvmptcjx  15311  dvef  15314  lgseisenlem4  15665
  Copyright terms: Public domain W3C validator