ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fmptcos Unicode version

Theorem fmptcos 5664
Description: Composition of two functions expressed as mapping abstractions. (Contributed by NM, 22-May-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
fmptcof.1  |-  ( ph  ->  A. x  e.  A  R  e.  B )
fmptcof.2  |-  ( ph  ->  F  =  ( x  e.  A  |->  R ) )
fmptcof.3  |-  ( ph  ->  G  =  ( y  e.  B  |->  S ) )
Assertion
Ref Expression
fmptcos  |-  ( ph  ->  ( G  o.  F
)  =  ( x  e.  A  |->  [_ R  /  y ]_ S
) )
Distinct variable groups:    x, y, B   
y, R    x, S    x, A
Allowed substitution hints:    ph( x, y)    A( y)    R( x)    S( y)    F( x, y)    G( x, y)

Proof of Theorem fmptcos
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 fmptcof.1 . 2  |-  ( ph  ->  A. x  e.  A  R  e.  B )
2 fmptcof.2 . 2  |-  ( ph  ->  F  =  ( x  e.  A  |->  R ) )
3 fmptcof.3 . . 3  |-  ( ph  ->  G  =  ( y  e.  B  |->  S ) )
4 nfcv 2312 . . . 4  |-  F/_ z S
5 nfcsb1v 3082 . . . 4  |-  F/_ y [_ z  /  y ]_ S
6 csbeq1a 3058 . . . 4  |-  ( y  =  z  ->  S  =  [_ z  /  y ]_ S )
74, 5, 6cbvmpt 4084 . . 3  |-  ( y  e.  B  |->  S )  =  ( z  e.  B  |->  [_ z  /  y ]_ S )
83, 7eqtrdi 2219 . 2  |-  ( ph  ->  G  =  ( z  e.  B  |->  [_ z  /  y ]_ S
) )
9 csbeq1 3052 . 2  |-  ( z  =  R  ->  [_ z  /  y ]_ S  =  [_ R  /  y ]_ S )
101, 2, 8, 9fmptcof 5663 1  |-  ( ph  ->  ( G  o.  F
)  =  ( x  e.  A  |->  [_ R  /  y ]_ S
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    e. wcel 2141   A.wral 2448   [_csb 3049    |-> cmpt 4050    o. ccom 4615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206
This theorem is referenced by:  fmpoco  6195
  Copyright terms: Public domain W3C validator