ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fmptcos Unicode version

Theorem fmptcos 5653
Description: Composition of two functions expressed as mapping abstractions. (Contributed by NM, 22-May-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
fmptcof.1  |-  ( ph  ->  A. x  e.  A  R  e.  B )
fmptcof.2  |-  ( ph  ->  F  =  ( x  e.  A  |->  R ) )
fmptcof.3  |-  ( ph  ->  G  =  ( y  e.  B  |->  S ) )
Assertion
Ref Expression
fmptcos  |-  ( ph  ->  ( G  o.  F
)  =  ( x  e.  A  |->  [_ R  /  y ]_ S
) )
Distinct variable groups:    x, y, B   
y, R    x, S    x, A
Allowed substitution hints:    ph( x, y)    A( y)    R( x)    S( y)    F( x, y)    G( x, y)

Proof of Theorem fmptcos
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 fmptcof.1 . 2  |-  ( ph  ->  A. x  e.  A  R  e.  B )
2 fmptcof.2 . 2  |-  ( ph  ->  F  =  ( x  e.  A  |->  R ) )
3 fmptcof.3 . . 3  |-  ( ph  ->  G  =  ( y  e.  B  |->  S ) )
4 nfcv 2308 . . . 4  |-  F/_ z S
5 nfcsb1v 3078 . . . 4  |-  F/_ y [_ z  /  y ]_ S
6 csbeq1a 3054 . . . 4  |-  ( y  =  z  ->  S  =  [_ z  /  y ]_ S )
74, 5, 6cbvmpt 4077 . . 3  |-  ( y  e.  B  |->  S )  =  ( z  e.  B  |->  [_ z  /  y ]_ S )
83, 7eqtrdi 2215 . 2  |-  ( ph  ->  G  =  ( z  e.  B  |->  [_ z  /  y ]_ S
) )
9 csbeq1 3048 . 2  |-  ( z  =  R  ->  [_ z  /  y ]_ S  =  [_ R  /  y ]_ S )
101, 2, 8, 9fmptcof 5652 1  |-  ( ph  ->  ( G  o.  F
)  =  ( x  e.  A  |->  [_ R  /  y ]_ S
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136   A.wral 2444   [_csb 3045    |-> cmpt 4043    o. ccom 4608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196
This theorem is referenced by:  fmpoco  6184
  Copyright terms: Public domain W3C validator