ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fcompt Unicode version

Theorem fcompt 5655
Description: Express composition of two functions as a maps-to applying both in sequence. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Proof shortened by Mario Carneiro, 27-Dec-2014.)
Assertion
Ref Expression
fcompt  |-  ( ( A : D --> E  /\  B : C --> D )  ->  ( A  o.  B )  =  ( x  e.  C  |->  ( A `  ( B `
 x ) ) ) )
Distinct variable groups:    x, A    x, B    x, C    x, D    x, E

Proof of Theorem fcompt
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ffvelrn 5618 . . 3  |-  ( ( B : C --> D  /\  x  e.  C )  ->  ( B `  x
)  e.  D )
21adantll 468 . 2  |-  ( ( ( A : D --> E  /\  B : C --> D )  /\  x  e.  C )  ->  ( B `  x )  e.  D )
3 ffn 5337 . . . 4  |-  ( B : C --> D  ->  B  Fn  C )
43adantl 275 . . 3  |-  ( ( A : D --> E  /\  B : C --> D )  ->  B  Fn  C
)
5 dffn5im 5532 . . 3  |-  ( B  Fn  C  ->  B  =  ( x  e.  C  |->  ( B `  x ) ) )
64, 5syl 14 . 2  |-  ( ( A : D --> E  /\  B : C --> D )  ->  B  =  ( x  e.  C  |->  ( B `  x ) ) )
7 ffn 5337 . . . 4  |-  ( A : D --> E  ->  A  Fn  D )
87adantr 274 . . 3  |-  ( ( A : D --> E  /\  B : C --> D )  ->  A  Fn  D
)
9 dffn5im 5532 . . 3  |-  ( A  Fn  D  ->  A  =  ( y  e.  D  |->  ( A `  y ) ) )
108, 9syl 14 . 2  |-  ( ( A : D --> E  /\  B : C --> D )  ->  A  =  ( y  e.  D  |->  ( A `  y ) ) )
11 fveq2 5486 . 2  |-  ( y  =  ( B `  x )  ->  ( A `  y )  =  ( A `  ( B `  x ) ) )
122, 6, 10, 11fmptco 5651 1  |-  ( ( A : D --> E  /\  B : C --> D )  ->  ( A  o.  B )  =  ( x  e.  C  |->  ( A `  ( B `
 x ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136    |-> cmpt 4043    o. ccom 4608    Fn wfn 5183   -->wf 5184   ` cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator