ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fcompt Unicode version

Theorem fcompt 5804
Description: Express composition of two functions as a maps-to applying both in sequence. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Proof shortened by Mario Carneiro, 27-Dec-2014.)
Assertion
Ref Expression
fcompt  |-  ( ( A : D --> E  /\  B : C --> D )  ->  ( A  o.  B )  =  ( x  e.  C  |->  ( A `  ( B `
 x ) ) ) )
Distinct variable groups:    x, A    x, B    x, C    x, D    x, E

Proof of Theorem fcompt
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ffvelcdm 5767 . . 3  |-  ( ( B : C --> D  /\  x  e.  C )  ->  ( B `  x
)  e.  D )
21adantll 476 . 2  |-  ( ( ( A : D --> E  /\  B : C --> D )  /\  x  e.  C )  ->  ( B `  x )  e.  D )
3 ffn 5472 . . . 4  |-  ( B : C --> D  ->  B  Fn  C )
43adantl 277 . . 3  |-  ( ( A : D --> E  /\  B : C --> D )  ->  B  Fn  C
)
5 dffn5im 5678 . . 3  |-  ( B  Fn  C  ->  B  =  ( x  e.  C  |->  ( B `  x ) ) )
64, 5syl 14 . 2  |-  ( ( A : D --> E  /\  B : C --> D )  ->  B  =  ( x  e.  C  |->  ( B `  x ) ) )
7 ffn 5472 . . . 4  |-  ( A : D --> E  ->  A  Fn  D )
87adantr 276 . . 3  |-  ( ( A : D --> E  /\  B : C --> D )  ->  A  Fn  D
)
9 dffn5im 5678 . . 3  |-  ( A  Fn  D  ->  A  =  ( y  e.  D  |->  ( A `  y ) ) )
108, 9syl 14 . 2  |-  ( ( A : D --> E  /\  B : C --> D )  ->  A  =  ( y  e.  D  |->  ( A `  y ) ) )
11 fveq2 5626 . 2  |-  ( y  =  ( B `  x )  ->  ( A `  y )  =  ( A `  ( B `  x ) ) )
122, 6, 10, 11fmptco 5800 1  |-  ( ( A : D --> E  /\  B : C --> D )  ->  ( A  o.  B )  =  ( x  e.  C  |->  ( A `  ( B `
 x ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200    |-> cmpt 4144    o. ccom 4722    Fn wfn 5312   -->wf 5313   ` cfv 5317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator