ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fcompt Unicode version

Theorem fcompt 5666
Description: Express composition of two functions as a maps-to applying both in sequence. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Proof shortened by Mario Carneiro, 27-Dec-2014.)
Assertion
Ref Expression
fcompt  |-  ( ( A : D --> E  /\  B : C --> D )  ->  ( A  o.  B )  =  ( x  e.  C  |->  ( A `  ( B `
 x ) ) ) )
Distinct variable groups:    x, A    x, B    x, C    x, D    x, E

Proof of Theorem fcompt
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ffvelrn 5629 . . 3  |-  ( ( B : C --> D  /\  x  e.  C )  ->  ( B `  x
)  e.  D )
21adantll 473 . 2  |-  ( ( ( A : D --> E  /\  B : C --> D )  /\  x  e.  C )  ->  ( B `  x )  e.  D )
3 ffn 5347 . . . 4  |-  ( B : C --> D  ->  B  Fn  C )
43adantl 275 . . 3  |-  ( ( A : D --> E  /\  B : C --> D )  ->  B  Fn  C
)
5 dffn5im 5542 . . 3  |-  ( B  Fn  C  ->  B  =  ( x  e.  C  |->  ( B `  x ) ) )
64, 5syl 14 . 2  |-  ( ( A : D --> E  /\  B : C --> D )  ->  B  =  ( x  e.  C  |->  ( B `  x ) ) )
7 ffn 5347 . . . 4  |-  ( A : D --> E  ->  A  Fn  D )
87adantr 274 . . 3  |-  ( ( A : D --> E  /\  B : C --> D )  ->  A  Fn  D
)
9 dffn5im 5542 . . 3  |-  ( A  Fn  D  ->  A  =  ( y  e.  D  |->  ( A `  y ) ) )
108, 9syl 14 . 2  |-  ( ( A : D --> E  /\  B : C --> D )  ->  A  =  ( y  e.  D  |->  ( A `  y ) ) )
11 fveq2 5496 . 2  |-  ( y  =  ( B `  x )  ->  ( A `  y )  =  ( A `  ( B `  x ) ) )
122, 6, 10, 11fmptco 5662 1  |-  ( ( A : D --> E  /\  B : C --> D )  ->  ( A  o.  B )  =  ( x  e.  C  |->  ( A `  ( B `
 x ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141    |-> cmpt 4050    o. ccom 4615    Fn wfn 5193   -->wf 5194   ` cfv 5198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator