ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fcompt Unicode version

Theorem fcompt 5728
Description: Express composition of two functions as a maps-to applying both in sequence. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Proof shortened by Mario Carneiro, 27-Dec-2014.)
Assertion
Ref Expression
fcompt  |-  ( ( A : D --> E  /\  B : C --> D )  ->  ( A  o.  B )  =  ( x  e.  C  |->  ( A `  ( B `
 x ) ) ) )
Distinct variable groups:    x, A    x, B    x, C    x, D    x, E

Proof of Theorem fcompt
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ffvelcdm 5691 . . 3  |-  ( ( B : C --> D  /\  x  e.  C )  ->  ( B `  x
)  e.  D )
21adantll 476 . 2  |-  ( ( ( A : D --> E  /\  B : C --> D )  /\  x  e.  C )  ->  ( B `  x )  e.  D )
3 ffn 5403 . . . 4  |-  ( B : C --> D  ->  B  Fn  C )
43adantl 277 . . 3  |-  ( ( A : D --> E  /\  B : C --> D )  ->  B  Fn  C
)
5 dffn5im 5602 . . 3  |-  ( B  Fn  C  ->  B  =  ( x  e.  C  |->  ( B `  x ) ) )
64, 5syl 14 . 2  |-  ( ( A : D --> E  /\  B : C --> D )  ->  B  =  ( x  e.  C  |->  ( B `  x ) ) )
7 ffn 5403 . . . 4  |-  ( A : D --> E  ->  A  Fn  D )
87adantr 276 . . 3  |-  ( ( A : D --> E  /\  B : C --> D )  ->  A  Fn  D
)
9 dffn5im 5602 . . 3  |-  ( A  Fn  D  ->  A  =  ( y  e.  D  |->  ( A `  y ) ) )
108, 9syl 14 . 2  |-  ( ( A : D --> E  /\  B : C --> D )  ->  A  =  ( y  e.  D  |->  ( A `  y ) ) )
11 fveq2 5554 . 2  |-  ( y  =  ( B `  x )  ->  ( A `  y )  =  ( A `  ( B `  x ) ) )
122, 6, 10, 11fmptco 5724 1  |-  ( ( A : D --> E  /\  B : C --> D )  ->  ( A  o.  B )  =  ( x  e.  C  |->  ( A `  ( B `
 x ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164    |-> cmpt 4090    o. ccom 4663    Fn wfn 5249   -->wf 5250   ` cfv 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator