ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  shftidt2 Unicode version

Theorem shftidt2 10774
Description: Identity law for the shift operation. (Contributed by Mario Carneiro, 5-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1  |-  F  e. 
_V
Assertion
Ref Expression
shftidt2  |-  ( F 
shift  0 )  =  ( F  |`  CC )

Proof of Theorem shftidt2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subid1 8118 . . . . 5  |-  ( x  e.  CC  ->  (
x  -  0 )  =  x )
21breq1d 3992 . . . 4  |-  ( x  e.  CC  ->  (
( x  -  0 ) F y  <->  x F
y ) )
32pm5.32i 450 . . 3  |-  ( ( x  e.  CC  /\  ( x  -  0
) F y )  <-> 
( x  e.  CC  /\  x F y ) )
43opabbii 4049 . 2  |-  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  0
) F y ) }  =  { <. x ,  y >.  |  ( x  e.  CC  /\  x F y ) }
5 0cn 7891 . . 3  |-  0  e.  CC
6 shftfval.1 . . . 4  |-  F  e. 
_V
76shftfval 10763 . . 3  |-  ( 0  e.  CC  ->  ( F  shift  0 )  =  { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  0 ) F y ) } )
85, 7ax-mp 5 . 2  |-  ( F 
shift  0 )  =  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  0 ) F y ) }
9 dfres2 4936 . 2  |-  ( F  |`  CC )  =  { <. x ,  y >.  |  ( x  e.  CC  /\  x F y ) }
104, 8, 93eqtr4i 2196 1  |-  ( F 
shift  0 )  =  ( F  |`  CC )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1343    e. wcel 2136   _Vcvv 2726   class class class wbr 3982   {copab 4042    |` cres 4606  (class class class)co 5842   CCcc 7751   0cc0 7753    - cmin 8069    shift cshi 10756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-resscn 7845  ax-1cn 7846  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-sub 8071  df-shft 10757
This theorem is referenced by:  shftidt  10775
  Copyright terms: Public domain W3C validator