| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > climshft2 | Unicode version | ||
| Description: A shifted function converges iff the original function converges. (Contributed by Paul Chapman, 21-Nov-2007.) (Revised by Mario Carneiro, 6-Feb-2014.) |
| Ref | Expression |
|---|---|
| climshft2.1 |
|
| climshft2.2 |
|
| climshft2.3 |
|
| climshft2.5 |
|
| climshft2.6 |
|
| climshft2.7 |
|
| Ref | Expression |
|---|---|
| climshft2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climshft2.1 |
. . 3
| |
| 2 | climshft2.6 |
. . . 4
| |
| 3 | climshft2.3 |
. . . . . 6
| |
| 4 | 3 | zcnd 9449 |
. . . . 5
|
| 5 | 4 | negcld 8324 |
. . . 4
|
| 6 | ovshftex 10984 |
. . . 4
| |
| 7 | 2, 5, 6 | syl2anc 411 |
. . 3
|
| 8 | climshft2.5 |
. . 3
| |
| 9 | climshft2.2 |
. . 3
| |
| 10 | funi 5290 |
. . . . . . . 8
| |
| 11 | elex 2774 |
. . . . . . . . . 10
| |
| 12 | 2, 11 | syl 14 |
. . . . . . . . 9
|
| 13 | dmi 4881 |
. . . . . . . . 9
| |
| 14 | 12, 13 | eleqtrrdi 2290 |
. . . . . . . 8
|
| 15 | funfvex 5575 |
. . . . . . . 8
| |
| 16 | 10, 14, 15 | sylancr 414 |
. . . . . . 7
|
| 17 | 16 | adantr 276 |
. . . . . 6
|
| 18 | 4 | adantr 276 |
. . . . . 6
|
| 19 | eluzelz 9610 |
. . . . . . . . 9
| |
| 20 | 19, 1 | eleq2s 2291 |
. . . . . . . 8
|
| 21 | 20 | zcnd 9449 |
. . . . . . 7
|
| 22 | 21 | adantl 277 |
. . . . . 6
|
| 23 | shftval4g 11002 |
. . . . . 6
| |
| 24 | 17, 18, 22, 23 | syl3anc 1249 |
. . . . 5
|
| 25 | fvi 5618 |
. . . . . . . . 9
| |
| 26 | 2, 25 | syl 14 |
. . . . . . . 8
|
| 27 | 26 | adantr 276 |
. . . . . . 7
|
| 28 | 27 | oveq1d 5937 |
. . . . . 6
|
| 29 | 28 | fveq1d 5560 |
. . . . 5
|
| 30 | addcom 8163 |
. . . . . . 7
| |
| 31 | 4, 21, 30 | syl2an 289 |
. . . . . 6
|
| 32 | 27, 31 | fveq12d 5565 |
. . . . 5
|
| 33 | 24, 29, 32 | 3eqtr3d 2237 |
. . . 4
|
| 34 | climshft2.7 |
. . . 4
| |
| 35 | 33, 34 | eqtrd 2229 |
. . 3
|
| 36 | 1, 7, 8, 9, 35 | climeq 11464 |
. 2
|
| 37 | 3 | znegcld 9450 |
. . 3
|
| 38 | climshft 11469 |
. . 3
| |
| 39 | 37, 2, 38 | syl2anc 411 |
. 2
|
| 40 | 36, 39 | bitr3d 190 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 df-uz 9602 df-shft 10980 df-clim 11444 |
| This theorem is referenced by: trireciplem 11665 |
| Copyright terms: Public domain | W3C validator |