ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climshft2 Unicode version

Theorem climshft2 10967
Description: A shifted function converges iff the original function converges. (Contributed by Paul Chapman, 21-Nov-2007.) (Revised by Mario Carneiro, 6-Feb-2014.)
Hypotheses
Ref Expression
climshft2.1  |-  Z  =  ( ZZ>= `  M )
climshft2.2  |-  ( ph  ->  M  e.  ZZ )
climshft2.3  |-  ( ph  ->  K  e.  ZZ )
climshft2.5  |-  ( ph  ->  F  e.  W )
climshft2.6  |-  ( ph  ->  G  e.  X )
climshft2.7  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  ( k  +  K ) )  =  ( F `  k
) )
Assertion
Ref Expression
climshft2  |-  ( ph  ->  ( F  ~~>  A  <->  G  ~~>  A ) )
Distinct variable groups:    k, F    k, G    k, K    k, M    ph, k    k, Z    A, k
Allowed substitution hints:    W( k)    X( k)

Proof of Theorem climshft2
StepHypRef Expression
1 climshft2.1 . . 3  |-  Z  =  ( ZZ>= `  M )
2 climshft2.6 . . . 4  |-  ( ph  ->  G  e.  X )
3 climshft2.3 . . . . . 6  |-  ( ph  ->  K  e.  ZZ )
43zcnd 9078 . . . . 5  |-  ( ph  ->  K  e.  CC )
54negcld 7983 . . . 4  |-  ( ph  -> 
-u K  e.  CC )
6 ovshftex 10484 . . . 4  |-  ( ( G  e.  X  /\  -u K  e.  CC )  ->  ( G  shift  -u K )  e.  _V )
72, 5, 6syl2anc 406 . . 3  |-  ( ph  ->  ( G  shift  -u K
)  e.  _V )
8 climshft2.5 . . 3  |-  ( ph  ->  F  e.  W )
9 climshft2.2 . . 3  |-  ( ph  ->  M  e.  ZZ )
10 funi 5113 . . . . . . . 8  |-  Fun  _I
11 elex 2668 . . . . . . . . . 10  |-  ( G  e.  X  ->  G  e.  _V )
122, 11syl 14 . . . . . . . . 9  |-  ( ph  ->  G  e.  _V )
13 dmi 4714 . . . . . . . . 9  |-  dom  _I  =  _V
1412, 13syl6eleqr 2208 . . . . . . . 8  |-  ( ph  ->  G  e.  dom  _I  )
15 funfvex 5392 . . . . . . . 8  |-  ( ( Fun  _I  /\  G  e.  dom  _I  )  -> 
(  _I  `  G
)  e.  _V )
1610, 14, 15sylancr 408 . . . . . . 7  |-  ( ph  ->  (  _I  `  G
)  e.  _V )
1716adantr 272 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  (  _I  `  G )  e. 
_V )
184adantr 272 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  K  e.  CC )
19 eluzelz 9237 . . . . . . . . 9  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  ZZ )
2019, 1eleq2s 2209 . . . . . . . 8  |-  ( k  e.  Z  ->  k  e.  ZZ )
2120zcnd 9078 . . . . . . 7  |-  ( k  e.  Z  ->  k  e.  CC )
2221adantl 273 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  k  e.  CC )
23 shftval4g 10502 . . . . . 6  |-  ( ( (  _I  `  G
)  e.  _V  /\  K  e.  CC  /\  k  e.  CC )  ->  (
( (  _I  `  G )  shift  -u K
) `  k )  =  ( (  _I 
`  G ) `  ( K  +  k
) ) )
2417, 18, 22, 23syl3anc 1199 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  (
( (  _I  `  G )  shift  -u K
) `  k )  =  ( (  _I 
`  G ) `  ( K  +  k
) ) )
25 fvi 5432 . . . . . . . . 9  |-  ( G  e.  X  ->  (  _I  `  G )  =  G )
262, 25syl 14 . . . . . . . 8  |-  ( ph  ->  (  _I  `  G
)  =  G )
2726adantr 272 . . . . . . 7  |-  ( (
ph  /\  k  e.  Z )  ->  (  _I  `  G )  =  G )
2827oveq1d 5743 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  (
(  _I  `  G
)  shift  -u K )  =  ( G  shift  -u K
) )
2928fveq1d 5377 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  (
( (  _I  `  G )  shift  -u K
) `  k )  =  ( ( G 
shift  -u K ) `  k ) )
30 addcom 7822 . . . . . . 7  |-  ( ( K  e.  CC  /\  k  e.  CC )  ->  ( K  +  k )  =  ( k  +  K ) )
314, 21, 30syl2an 285 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  ( K  +  k )  =  ( k  +  K ) )
3227, 31fveq12d 5382 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  (
(  _I  `  G
) `  ( K  +  k ) )  =  ( G `  ( k  +  K
) ) )
3324, 29, 323eqtr3d 2155 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  (
( G  shift  -u K
) `  k )  =  ( G `  ( k  +  K
) ) )
34 climshft2.7 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  ( k  +  K ) )  =  ( F `  k
) )
3533, 34eqtrd 2147 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  (
( G  shift  -u K
) `  k )  =  ( F `  k ) )
361, 7, 8, 9, 35climeq 10960 . 2  |-  ( ph  ->  ( ( G  shift  -u K )  ~~>  A  <->  F  ~~>  A ) )
373znegcld 9079 . . 3  |-  ( ph  -> 
-u K  e.  ZZ )
38 climshft 10965 . . 3  |-  ( (
-u K  e.  ZZ  /\  G  e.  X )  ->  ( ( G 
shift  -u K )  ~~>  A  <->  G  ~~>  A ) )
3937, 2, 38syl2anc 406 . 2  |-  ( ph  ->  ( ( G  shift  -u K )  ~~>  A  <->  G  ~~>  A ) )
4036, 39bitr3d 189 1  |-  ( ph  ->  ( F  ~~>  A  <->  G  ~~>  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1314    e. wcel 1463   _Vcvv 2657   class class class wbr 3895    _I cid 4170   dom cdm 4499   Fun wfun 5075   ` cfv 5081  (class class class)co 5728   CCcc 7545    + caddc 7550   -ucneg 7857   ZZcz 8958   ZZ>=cuz 9228    shift cshi 10479    ~~> cli 10939
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4003  ax-sep 4006  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-cnex 7636  ax-resscn 7637  ax-1cn 7638  ax-1re 7639  ax-icn 7640  ax-addcl 7641  ax-addrcl 7642  ax-mulcl 7643  ax-addcom 7645  ax-addass 7647  ax-distr 7649  ax-i2m1 7650  ax-0lt1 7651  ax-0id 7653  ax-rnegex 7654  ax-cnre 7656  ax-pre-ltirr 7657  ax-pre-ltwlin 7658  ax-pre-lttrn 7659  ax-pre-apti 7660  ax-pre-ltadd 7661
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-nel 2378  df-ral 2395  df-rex 2396  df-reu 2397  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-if 3441  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-id 4175  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089  df-riota 5684  df-ov 5731  df-oprab 5732  df-mpo 5733  df-pnf 7726  df-mnf 7727  df-xr 7728  df-ltxr 7729  df-le 7730  df-sub 7858  df-neg 7859  df-inn 8631  df-n0 8882  df-z 8959  df-uz 9229  df-shft 10480  df-clim 10940
This theorem is referenced by:  trireciplem  11161
  Copyright terms: Public domain W3C validator