ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmmpog Unicode version

Theorem dmmpog 6210
Description: Domain of an operation given by the maps-to notation, closed form of dmmpo 6206. Caution: This theorem is only valid in the very special case where the value of the mapping is a constant! (Contributed by Alexander van der Vekens, 1-Jun-2017.) (Proof shortened by AV, 10-Feb-2019.)
Hypothesis
Ref Expression
dmmpog.f  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
Assertion
Ref Expression
dmmpog  |-  ( C  e.  V  ->  dom  F  =  ( A  X.  B ) )
Distinct variable groups:    x, A, y   
x, B, y    x, V, y    x, C, y
Allowed substitution hints:    F( x, y)

Proof of Theorem dmmpog
StepHypRef Expression
1 simpl 109 . . 3  |-  ( ( C  e.  V  /\  ( x  e.  A  /\  y  e.  B
) )  ->  C  e.  V )
21ralrimivva 2559 . 2  |-  ( C  e.  V  ->  A. x  e.  A  A. y  e.  B  C  e.  V )
3 dmmpog.f . . 3  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
43dmmpoga 6209 . 2  |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  dom  F  =  ( A  X.  B ) )
52, 4syl 14 1  |-  ( C  e.  V  ->  dom  F  =  ( A  X.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   A.wral 2455    X. cxp 4625   dom cdm 4627    e. cmpo 5877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-fv 5225  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator