ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmmpog Unicode version

Theorem dmmpog 6177
Description: Domain of an operation given by the maps-to notation, closed form of dmmpo 6173. Caution: This theorem is only valid in the very special case where the value of the mapping is a constant! (Contributed by Alexander van der Vekens, 1-Jun-2017.) (Proof shortened by AV, 10-Feb-2019.)
Hypothesis
Ref Expression
dmmpog.f  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
Assertion
Ref Expression
dmmpog  |-  ( C  e.  V  ->  dom  F  =  ( A  X.  B ) )
Distinct variable groups:    x, A, y   
x, B, y    x, V, y    x, C, y
Allowed substitution hints:    F( x, y)

Proof of Theorem dmmpog
StepHypRef Expression
1 simpl 108 . . 3  |-  ( ( C  e.  V  /\  ( x  e.  A  /\  y  e.  B
) )  ->  C  e.  V )
21ralrimivva 2548 . 2  |-  ( C  e.  V  ->  A. x  e.  A  A. y  e.  B  C  e.  V )
3 dmmpog.f . . 3  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
43dmmpoga 6176 . 2  |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  dom  F  =  ( A  X.  B ) )
52, 4syl 14 1  |-  ( C  e.  V  ->  dom  F  =  ( A  X.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   A.wral 2444    X. cxp 4602   dom cdm 4604    e. cmpo 5844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator