ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpoexxg Unicode version

Theorem mpoexxg 6189
Description: Existence of an operation class abstraction (version for dependent domains). (Contributed by Mario Carneiro, 30-Dec-2016.)
Hypothesis
Ref Expression
mpoexg.1  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
Assertion
Ref Expression
mpoexxg  |-  ( ( A  e.  R  /\  A. x  e.  A  B  e.  S )  ->  F  e.  _V )
Distinct variable groups:    x, A, y   
y, B
Allowed substitution hints:    B( x)    C( x, y)    R( x, y)    S( x, y)    F( x, y)

Proof of Theorem mpoexxg
StepHypRef Expression
1 mpoexg.1 . . 3  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
21mpofun 5955 . 2  |-  Fun  F
31dmmpossx 6178 . . 3  |-  dom  F  C_ 
U_ x  e.  A  ( { x }  X.  B )
4 vex 2733 . . . . . . 7  |-  x  e. 
_V
5 snexg 4170 . . . . . . 7  |-  ( x  e.  _V  ->  { x }  e.  _V )
64, 5ax-mp 5 . . . . . 6  |-  { x }  e.  _V
7 xpexg 4725 . . . . . 6  |-  ( ( { x }  e.  _V  /\  B  e.  S
)  ->  ( {
x }  X.  B
)  e.  _V )
86, 7mpan 422 . . . . 5  |-  ( B  e.  S  ->  ( { x }  X.  B )  e.  _V )
98ralimi 2533 . . . 4  |-  ( A. x  e.  A  B  e.  S  ->  A. x  e.  A  ( {
x }  X.  B
)  e.  _V )
10 iunexg 6098 . . . 4  |-  ( ( A  e.  R  /\  A. x  e.  A  ( { x }  X.  B )  e.  _V )  ->  U_ x  e.  A  ( { x }  X.  B )  e.  _V )
119, 10sylan2 284 . . 3  |-  ( ( A  e.  R  /\  A. x  e.  A  B  e.  S )  ->  U_ x  e.  A  ( {
x }  X.  B
)  e.  _V )
12 ssexg 4128 . . 3  |-  ( ( dom  F  C_  U_ x  e.  A  ( {
x }  X.  B
)  /\  U_ x  e.  A  ( { x }  X.  B )  e. 
_V )  ->  dom  F  e.  _V )
133, 11, 12sylancr 412 . 2  |-  ( ( A  e.  R  /\  A. x  e.  A  B  e.  S )  ->  dom  F  e.  _V )
14 funex 5719 . 2  |-  ( ( Fun  F  /\  dom  F  e.  _V )  ->  F  e.  _V )
152, 13, 14sylancr 412 1  |-  ( ( A  e.  R  /\  A. x  e.  A  B  e.  S )  ->  F  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   A.wral 2448   _Vcvv 2730    C_ wss 3121   {csn 3583   U_ciun 3873    X. cxp 4609   dom cdm 4611   Fun wfun 5192    e. cmpo 5855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120
This theorem is referenced by:  mpoexg  6190  mpoex  6193
  Copyright terms: Public domain W3C validator