ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpoexxg Unicode version

Theorem mpoexxg 6201
Description: Existence of an operation class abstraction (version for dependent domains). (Contributed by Mario Carneiro, 30-Dec-2016.)
Hypothesis
Ref Expression
mpoexg.1  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
Assertion
Ref Expression
mpoexxg  |-  ( ( A  e.  R  /\  A. x  e.  A  B  e.  S )  ->  F  e.  _V )
Distinct variable groups:    x, A, y   
y, B
Allowed substitution hints:    B( x)    C( x, y)    R( x, y)    S( x, y)    F( x, y)

Proof of Theorem mpoexxg
StepHypRef Expression
1 mpoexg.1 . . 3  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
21mpofun 5967 . 2  |-  Fun  F
31dmmpossx 6190 . . 3  |-  dom  F  C_ 
U_ x  e.  A  ( { x }  X.  B )
4 vex 2738 . . . . . . 7  |-  x  e. 
_V
5 snexg 4179 . . . . . . 7  |-  ( x  e.  _V  ->  { x }  e.  _V )
64, 5ax-mp 5 . . . . . 6  |-  { x }  e.  _V
7 xpexg 4734 . . . . . 6  |-  ( ( { x }  e.  _V  /\  B  e.  S
)  ->  ( {
x }  X.  B
)  e.  _V )
86, 7mpan 424 . . . . 5  |-  ( B  e.  S  ->  ( { x }  X.  B )  e.  _V )
98ralimi 2538 . . . 4  |-  ( A. x  e.  A  B  e.  S  ->  A. x  e.  A  ( {
x }  X.  B
)  e.  _V )
10 iunexg 6110 . . . 4  |-  ( ( A  e.  R  /\  A. x  e.  A  ( { x }  X.  B )  e.  _V )  ->  U_ x  e.  A  ( { x }  X.  B )  e.  _V )
119, 10sylan2 286 . . 3  |-  ( ( A  e.  R  /\  A. x  e.  A  B  e.  S )  ->  U_ x  e.  A  ( {
x }  X.  B
)  e.  _V )
12 ssexg 4137 . . 3  |-  ( ( dom  F  C_  U_ x  e.  A  ( {
x }  X.  B
)  /\  U_ x  e.  A  ( { x }  X.  B )  e. 
_V )  ->  dom  F  e.  _V )
133, 11, 12sylancr 414 . 2  |-  ( ( A  e.  R  /\  A. x  e.  A  B  e.  S )  ->  dom  F  e.  _V )
14 funex 5731 . 2  |-  ( ( Fun  F  /\  dom  F  e.  _V )  ->  F  e.  _V )
152, 13, 14sylancr 414 1  |-  ( ( A  e.  R  /\  A. x  e.  A  B  e.  S )  ->  F  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2146   A.wral 2453   _Vcvv 2735    C_ wss 3127   {csn 3589   U_ciun 3882    X. cxp 4618   dom cdm 4620   Fun wfun 5202    e. cmpo 5867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132
This theorem is referenced by:  mpoexg  6202  mpoex  6205
  Copyright terms: Public domain W3C validator