ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpoexxg Unicode version

Theorem mpoexxg 6265
Description: Existence of an operation class abstraction (version for dependent domains). (Contributed by Mario Carneiro, 30-Dec-2016.)
Hypothesis
Ref Expression
mpoexg.1  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
Assertion
Ref Expression
mpoexxg  |-  ( ( A  e.  R  /\  A. x  e.  A  B  e.  S )  ->  F  e.  _V )
Distinct variable groups:    x, A, y   
y, B
Allowed substitution hints:    B( x)    C( x, y)    R( x, y)    S( x, y)    F( x, y)

Proof of Theorem mpoexxg
StepHypRef Expression
1 mpoexg.1 . . 3  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
21mpofun 6021 . 2  |-  Fun  F
31dmmpossx 6254 . . 3  |-  dom  F  C_ 
U_ x  e.  A  ( { x }  X.  B )
4 vex 2763 . . . . . . 7  |-  x  e. 
_V
5 snexg 4214 . . . . . . 7  |-  ( x  e.  _V  ->  { x }  e.  _V )
64, 5ax-mp 5 . . . . . 6  |-  { x }  e.  _V
7 xpexg 4774 . . . . . 6  |-  ( ( { x }  e.  _V  /\  B  e.  S
)  ->  ( {
x }  X.  B
)  e.  _V )
86, 7mpan 424 . . . . 5  |-  ( B  e.  S  ->  ( { x }  X.  B )  e.  _V )
98ralimi 2557 . . . 4  |-  ( A. x  e.  A  B  e.  S  ->  A. x  e.  A  ( {
x }  X.  B
)  e.  _V )
10 iunexg 6173 . . . 4  |-  ( ( A  e.  R  /\  A. x  e.  A  ( { x }  X.  B )  e.  _V )  ->  U_ x  e.  A  ( { x }  X.  B )  e.  _V )
119, 10sylan2 286 . . 3  |-  ( ( A  e.  R  /\  A. x  e.  A  B  e.  S )  ->  U_ x  e.  A  ( {
x }  X.  B
)  e.  _V )
12 ssexg 4169 . . 3  |-  ( ( dom  F  C_  U_ x  e.  A  ( {
x }  X.  B
)  /\  U_ x  e.  A  ( { x }  X.  B )  e. 
_V )  ->  dom  F  e.  _V )
133, 11, 12sylancr 414 . 2  |-  ( ( A  e.  R  /\  A. x  e.  A  B  e.  S )  ->  dom  F  e.  _V )
14 funex 5782 . 2  |-  ( ( Fun  F  /\  dom  F  e.  _V )  ->  F  e.  _V )
152, 13, 14sylancr 414 1  |-  ( ( A  e.  R  /\  A. x  e.  A  B  e.  S )  ->  F  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   A.wral 2472   _Vcvv 2760    C_ wss 3154   {csn 3619   U_ciun 3913    X. cxp 4658   dom cdm 4660   Fun wfun 5249    e. cmpo 5921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196
This theorem is referenced by:  mpoexg  6266  mpoex  6269
  Copyright terms: Public domain W3C validator