ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmmpoga Unicode version

Theorem dmmpoga 6208
Description: Domain of an operation given by the maps-to notation, closed form of dmmpo 6205. (Contributed by Alexander van der Vekens, 10-Feb-2019.)
Hypothesis
Ref Expression
dmmpog.f  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
Assertion
Ref Expression
dmmpoga  |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  dom  F  =  ( A  X.  B ) )
Distinct variable groups:    x, A, y   
x, B, y    x, V, y
Allowed substitution hints:    C( x, y)    F( x, y)

Proof of Theorem dmmpoga
StepHypRef Expression
1 dmmpog.f . . 3  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
21fnmpo 6202 . 2  |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  F  Fn  ( A  X.  B
) )
3 fndm 5315 . 2  |-  ( F  Fn  ( A  X.  B )  ->  dom  F  =  ( A  X.  B ) )
42, 3syl 14 1  |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  dom  F  =  ( A  X.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148   A.wral 2455    X. cxp 4624   dom cdm 4626    Fn wfn 5211    e. cmpo 5876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-fv 5224  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141
This theorem is referenced by:  dmmpog  6209  mpoexw  6213
  Copyright terms: Public domain W3C validator