ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmmpoga Unicode version

Theorem dmmpoga 6317
Description: Domain of an operation given by the maps-to notation, closed form of dmmpo 6313. (Contributed by Alexander van der Vekens, 10-Feb-2019.)
Hypothesis
Ref Expression
dmmpog.f  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
Assertion
Ref Expression
dmmpoga  |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  dom  F  =  ( A  X.  B ) )
Distinct variable groups:    x, A, y   
x, B, y    x, V, y
Allowed substitution hints:    C( x, y)    F( x, y)

Proof of Theorem dmmpoga
StepHypRef Expression
1 dmmpog.f . . 3  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
21fnmpo 6311 . 2  |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  F  Fn  ( A  X.  B
) )
3 fndm 5392 . 2  |-  ( F  Fn  ( A  X.  B )  ->  dom  F  =  ( A  X.  B ) )
42, 3syl 14 1  |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  dom  F  =  ( A  X.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2178   A.wral 2486    X. cxp 4691   dom cdm 4693    Fn wfn 5285    e. cmpo 5969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250
This theorem is referenced by:  dmmpog  6318  mpoexw  6322
  Copyright terms: Public domain W3C validator