| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmmpt | GIF version | ||
| Description: The domain of the mapping operation in general. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 22-Mar-2015.) |
| Ref | Expression |
|---|---|
| dmmpo.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| dmmpt | ⊢ dom 𝐹 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdm4 4879 | . 2 ⊢ dom 𝐹 = ran ◡𝐹 | |
| 2 | dfrn4 5152 | . 2 ⊢ ran ◡𝐹 = (◡𝐹 “ V) | |
| 3 | dmmpo.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 4 | 3 | mptpreima 5185 | . 2 ⊢ (◡𝐹 “ V) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
| 5 | 1, 2, 4 | 3eqtri 2231 | 1 ⊢ dom 𝐹 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2177 {crab 2489 Vcvv 2773 ↦ cmpt 4113 ◡ccnv 4682 dom cdm 4683 ran crn 4684 “ cima 4686 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-br 4052 df-opab 4114 df-mpt 4115 df-xp 4689 df-rel 4690 df-cnv 4691 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 |
| This theorem is referenced by: dmmptss 5188 dmmptg 5189 dmmptd 5416 fvmptssdm 5677 isnumi 7304 dvrecap 15260 |
| Copyright terms: Public domain | W3C validator |