ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmmpt GIF version

Theorem dmmpt 4970
Description: The domain of the mapping operation in general. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 22-Mar-2015.)
Hypothesis
Ref Expression
dmmpo.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
dmmpt dom 𝐹 = {𝑥𝐴𝐵 ∈ V}

Proof of Theorem dmmpt
StepHypRef Expression
1 dfdm4 4669 . 2 dom 𝐹 = ran 𝐹
2 dfrn4 4935 . 2 ran 𝐹 = (𝐹 “ V)
3 dmmpo.1 . . 3 𝐹 = (𝑥𝐴𝐵)
43mptpreima 4968 . 2 (𝐹 “ V) = {𝑥𝐴𝐵 ∈ V}
51, 2, 43eqtri 2124 1 dom 𝐹 = {𝑥𝐴𝐵 ∈ V}
Colors of variables: wff set class
Syntax hints:   = wceq 1299  wcel 1448  {crab 2379  Vcvv 2641  cmpt 3929  ccnv 4476  dom cdm 4477  ran crn 4478  cima 4480
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ral 2380  df-rex 2381  df-rab 2384  df-v 2643  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-br 3876  df-opab 3930  df-mpt 3931  df-xp 4483  df-rel 4484  df-cnv 4485  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490
This theorem is referenced by:  dmmptss  4971  dmmptg  4972  dmmptd  5189  fvmptssdm  5437  isnumi  6949
  Copyright terms: Public domain W3C validator