ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmmptg Unicode version

Theorem dmmptg 5180
Description: The domain of the mapping operation is the stated domain, if the function value is always a set. (Contributed by Mario Carneiro, 9-Feb-2013.) (Revised by Mario Carneiro, 14-Sep-2013.)
Assertion
Ref Expression
dmmptg  |-  ( A. x  e.  A  B  e.  V  ->  dom  (
x  e.  A  |->  B )  =  A )
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    V( x)

Proof of Theorem dmmptg
StepHypRef Expression
1 eqid 2205 . . 3  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
21dmmpt 5178 . 2  |-  dom  (
x  e.  A  |->  B )  =  { x  e.  A  |  B  e.  _V }
3 elex 2783 . . . 4  |-  ( B  e.  V  ->  B  e.  _V )
43ralimi 2569 . . 3  |-  ( A. x  e.  A  B  e.  V  ->  A. x  e.  A  B  e.  _V )
5 rabid2 2683 . . 3  |-  ( A  =  { x  e.  A  |  B  e. 
_V }  <->  A. x  e.  A  B  e.  _V )
64, 5sylibr 134 . 2  |-  ( A. x  e.  A  B  e.  V  ->  A  =  { x  e.  A  |  B  e.  _V } )
72, 6eqtr4id 2257 1  |-  ( A. x  e.  A  B  e.  V  ->  dom  (
x  e.  A  |->  B )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176   A.wral 2484   {crab 2488   _Vcvv 2772    |-> cmpt 4105   dom cdm 4675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-mpt 4107  df-xp 4681  df-rel 4682  df-cnv 4683  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688
This theorem is referenced by:  resfunexg  5805  rdgtfr  6460  rdgruledefgg  6461  swrd0g  11113  negfi  11539  limccnp2lem  15148  dvmptclx  15190  dvmptaddx  15191  dvmptmulx  15192
  Copyright terms: Public domain W3C validator