ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmmptg Unicode version

Theorem dmmptg 4972
Description: The domain of the mapping operation is the stated domain, if the function value is always a set. (Contributed by Mario Carneiro, 9-Feb-2013.) (Revised by Mario Carneiro, 14-Sep-2013.)
Assertion
Ref Expression
dmmptg  |-  ( A. x  e.  A  B  e.  V  ->  dom  (
x  e.  A  |->  B )  =  A )
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    V( x)

Proof of Theorem dmmptg
StepHypRef Expression
1 elex 2652 . . . 4  |-  ( B  e.  V  ->  B  e.  _V )
21ralimi 2454 . . 3  |-  ( A. x  e.  A  B  e.  V  ->  A. x  e.  A  B  e.  _V )
3 rabid2 2565 . . 3  |-  ( A  =  { x  e.  A  |  B  e. 
_V }  <->  A. x  e.  A  B  e.  _V )
42, 3sylibr 133 . 2  |-  ( A. x  e.  A  B  e.  V  ->  A  =  { x  e.  A  |  B  e.  _V } )
5 eqid 2100 . . 3  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
65dmmpt 4970 . 2  |-  dom  (
x  e.  A  |->  B )  =  { x  e.  A  |  B  e.  _V }
74, 6syl6reqr 2151 1  |-  ( A. x  e.  A  B  e.  V  ->  dom  (
x  e.  A  |->  B )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1299    e. wcel 1448   A.wral 2375   {crab 2379   _Vcvv 2641    |-> cmpt 3929   dom cdm 4477
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ral 2380  df-rex 2381  df-rab 2384  df-v 2643  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-br 3876  df-opab 3930  df-mpt 3931  df-xp 4483  df-rel 4484  df-cnv 4485  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490
This theorem is referenced by:  resfunexg  5573  rdgtfr  6201  rdgruledefgg  6202  negfi  10838
  Copyright terms: Public domain W3C validator