ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmmptg Unicode version

Theorem dmmptg 5108
Description: The domain of the mapping operation is the stated domain, if the function value is always a set. (Contributed by Mario Carneiro, 9-Feb-2013.) (Revised by Mario Carneiro, 14-Sep-2013.)
Assertion
Ref Expression
dmmptg  |-  ( A. x  e.  A  B  e.  V  ->  dom  (
x  e.  A  |->  B )  =  A )
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    V( x)

Proof of Theorem dmmptg
StepHypRef Expression
1 eqid 2170 . . 3  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
21dmmpt 5106 . 2  |-  dom  (
x  e.  A  |->  B )  =  { x  e.  A  |  B  e.  _V }
3 elex 2741 . . . 4  |-  ( B  e.  V  ->  B  e.  _V )
43ralimi 2533 . . 3  |-  ( A. x  e.  A  B  e.  V  ->  A. x  e.  A  B  e.  _V )
5 rabid2 2646 . . 3  |-  ( A  =  { x  e.  A  |  B  e. 
_V }  <->  A. x  e.  A  B  e.  _V )
64, 5sylibr 133 . 2  |-  ( A. x  e.  A  B  e.  V  ->  A  =  { x  e.  A  |  B  e.  _V } )
72, 6eqtr4id 2222 1  |-  ( A. x  e.  A  B  e.  V  ->  dom  (
x  e.  A  |->  B )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    e. wcel 2141   A.wral 2448   {crab 2452   _Vcvv 2730    |-> cmpt 4050   dom cdm 4611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-mpt 4052  df-xp 4617  df-rel 4618  df-cnv 4619  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624
This theorem is referenced by:  resfunexg  5717  rdgtfr  6353  rdgruledefgg  6354  negfi  11191  limccnp2lem  13439  dvmptclx  13474  dvmptaddx  13475  dvmptmulx  13476
  Copyright terms: Public domain W3C validator