ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmmptss Unicode version

Theorem dmmptss 5127
Description: The domain of a mapping is a subset of its base class. (Contributed by Scott Fenton, 17-Jun-2013.)
Hypothesis
Ref Expression
dmmpo.1  |-  F  =  ( x  e.  A  |->  B )
Assertion
Ref Expression
dmmptss  |-  dom  F  C_  A
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    F( x)

Proof of Theorem dmmptss
StepHypRef Expression
1 dmmpo.1 . . 3  |-  F  =  ( x  e.  A  |->  B )
21dmmpt 5126 . 2  |-  dom  F  =  { x  e.  A  |  B  e.  _V }
3 ssrab2 3242 . 2  |-  { x  e.  A  |  B  e.  _V }  C_  A
42, 3eqsstri 3189 1  |-  dom  F  C_  A
Colors of variables: wff set class
Syntax hints:    = wceq 1353    e. wcel 2148   {crab 2459   _Vcvv 2739    C_ wss 3131    |-> cmpt 4066   dom cdm 4628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-mpt 4068  df-xp 4634  df-rel 4635  df-cnv 4636  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641
This theorem is referenced by:  mptrcl  5601  fvmptssdm  5603  elfvmptrab1  5613  mptexg  5744  mptexw  6117  dmmpossx  6203  tposssxp  6253  lmrcl  13831  cnprcl2k  13846  isxms2  14092
  Copyright terms: Public domain W3C validator