ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmmptss Unicode version

Theorem dmmptss 5100
Description: The domain of a mapping is a subset of its base class. (Contributed by Scott Fenton, 17-Jun-2013.)
Hypothesis
Ref Expression
dmmpo.1  |-  F  =  ( x  e.  A  |->  B )
Assertion
Ref Expression
dmmptss  |-  dom  F  C_  A
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    F( x)

Proof of Theorem dmmptss
StepHypRef Expression
1 dmmpo.1 . . 3  |-  F  =  ( x  e.  A  |->  B )
21dmmpt 5099 . 2  |-  dom  F  =  { x  e.  A  |  B  e.  _V }
3 ssrab2 3227 . 2  |-  { x  e.  A  |  B  e.  _V }  C_  A
42, 3eqsstri 3174 1  |-  dom  F  C_  A
Colors of variables: wff set class
Syntax hints:    = wceq 1343    e. wcel 2136   {crab 2448   _Vcvv 2726    C_ wss 3116    |-> cmpt 4043   dom cdm 4604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-mpt 4045  df-xp 4610  df-rel 4611  df-cnv 4612  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617
This theorem is referenced by:  mptrcl  5568  fvmptssdm  5570  elfvmptrab1  5580  mptexg  5710  mptexw  6081  dmmpossx  6167  tposssxp  6217  lmrcl  12831  cnprcl2k  12846  isxms2  13092
  Copyright terms: Public domain W3C validator