ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  domen1 Unicode version

Theorem domen1 6820
Description: Equality-like theorem for equinumerosity and dominance. (Contributed by NM, 8-Nov-2003.)
Assertion
Ref Expression
domen1  |-  ( A 
~~  B  ->  ( A  ~<_  C  <->  B  ~<_  C ) )

Proof of Theorem domen1
StepHypRef Expression
1 ensym 6759 . . 3  |-  ( A 
~~  B  ->  B  ~~  A )
2 endomtr 6768 . . 3  |-  ( ( B  ~~  A  /\  A  ~<_  C )  ->  B  ~<_  C )
31, 2sylan 281 . 2  |-  ( ( A  ~~  B  /\  A  ~<_  C )  ->  B  ~<_  C )
4 endomtr 6768 . 2  |-  ( ( A  ~~  B  /\  B  ~<_  C )  ->  A  ~<_  C )
53, 4impbida 591 1  |-  ( A 
~~  B  ->  ( A  ~<_  C  <->  B  ~<_  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   class class class wbr 3989    ~~ cen 6716    ~<_ cdom 6717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-er 6513  df-en 6719  df-dom 6720
This theorem is referenced by:  fihashdom  10738
  Copyright terms: Public domain W3C validator