ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  domen1 Unicode version

Theorem domen1 6859
Description: Equality-like theorem for equinumerosity and dominance. (Contributed by NM, 8-Nov-2003.)
Assertion
Ref Expression
domen1  |-  ( A 
~~  B  ->  ( A  ~<_  C  <->  B  ~<_  C ) )

Proof of Theorem domen1
StepHypRef Expression
1 ensym 6798 . . 3  |-  ( A 
~~  B  ->  B  ~~  A )
2 endomtr 6807 . . 3  |-  ( ( B  ~~  A  /\  A  ~<_  C )  ->  B  ~<_  C )
31, 2sylan 283 . 2  |-  ( ( A  ~~  B  /\  A  ~<_  C )  ->  B  ~<_  C )
4 endomtr 6807 . 2  |-  ( ( A  ~~  B  /\  B  ~<_  C )  ->  A  ~<_  C )
53, 4impbida 596 1  |-  ( A 
~~  B  ->  ( A  ~<_  C  <->  B  ~<_  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   class class class wbr 4017    ~~ cen 6755    ~<_ cdom 6756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2161  ax-14 2162  ax-ext 2170  ax-sep 4135  ax-pow 4188  ax-pr 4223  ax-un 4447
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2040  df-mo 2041  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-ral 2472  df-rex 2473  df-v 2753  df-un 3147  df-in 3149  df-ss 3156  df-pw 3591  df-sn 3612  df-pr 3613  df-op 3615  df-uni 3824  df-br 4018  df-opab 4079  df-id 4307  df-xp 4646  df-rel 4647  df-cnv 4648  df-co 4649  df-dm 4650  df-rn 4651  df-res 4652  df-ima 4653  df-fun 5232  df-fn 5233  df-f 5234  df-f1 5235  df-fo 5236  df-f1o 5237  df-er 6552  df-en 6758  df-dom 6759
This theorem is referenced by:  fihashdom  10800
  Copyright terms: Public domain W3C validator