Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ensym | Unicode version |
Description: Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
ensym |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ensymb 6746 | . 2 | |
2 | 1 | biimpi 119 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 class class class wbr 3982 cen 6704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-er 6501 df-en 6707 |
This theorem is referenced by: ensymi 6748 ensymd 6749 enen1 6806 enen2 6807 domen1 6808 domen2 6809 nneneq 6823 ssfilem 6841 diffitest 6853 fiintim 6894 fisseneq 6897 en1eqsn 6913 fidcenumlemim 6917 enomni 7103 enmkv 7126 enwomni 7134 finnum 7139 pr2ne 7148 djucomen 7172 cc2lem 7207 enct 12366 |
Copyright terms: Public domain | W3C validator |