ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ensym Unicode version

Theorem ensym 6799
Description: Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
ensym  |-  ( A 
~~  B  ->  B  ~~  A )

Proof of Theorem ensym
StepHypRef Expression
1 ensymb 6798 . 2  |-  ( A 
~~  B  <->  B  ~~  A )
21biimpi 120 1  |-  ( A 
~~  B  ->  B  ~~  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4   class class class wbr 4018    ~~ cen 6756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-fun 5233  df-fn 5234  df-f 5235  df-f1 5236  df-fo 5237  df-f1o 5238  df-er 6553  df-en 6759
This theorem is referenced by:  ensymi  6800  ensymd  6801  enen1  6858  enen2  6859  domen1  6860  domen2  6861  nneneq  6875  ssfilem  6893  diffitest  6905  fiintim  6946  fisseneq  6949  en1eqsn  6965  fidcenumlemim  6969  enomni  7155  enmkv  7178  enwomni  7186  finnum  7200  pr2ne  7209  djucomen  7233  cc2lem  7283  enct  12452
  Copyright terms: Public domain W3C validator