ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ensym Unicode version

Theorem ensym 6783
Description: Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
ensym  |-  ( A 
~~  B  ->  B  ~~  A )

Proof of Theorem ensym
StepHypRef Expression
1 ensymb 6782 . 2  |-  ( A 
~~  B  <->  B  ~~  A )
21biimpi 120 1  |-  ( A 
~~  B  ->  B  ~~  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4   class class class wbr 4005    ~~ cen 6740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-er 6537  df-en 6743
This theorem is referenced by:  ensymi  6784  ensymd  6785  enen1  6842  enen2  6843  domen1  6844  domen2  6845  nneneq  6859  ssfilem  6877  diffitest  6889  fiintim  6930  fisseneq  6933  en1eqsn  6949  fidcenumlemim  6953  enomni  7139  enmkv  7162  enwomni  7170  finnum  7184  pr2ne  7193  djucomen  7217  cc2lem  7267  enct  12436
  Copyright terms: Public domain W3C validator