ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  domen2 Unicode version

Theorem domen2 6942
Description: Equality-like theorem for equinumerosity and dominance. (Contributed by NM, 8-Nov-2003.)
Assertion
Ref Expression
domen2  |-  ( A 
~~  B  ->  ( C  ~<_  A  <->  C  ~<_  B ) )

Proof of Theorem domen2
StepHypRef Expression
1 domentr 6885 . . 3  |-  ( ( C  ~<_  A  /\  A  ~~  B )  ->  C  ~<_  B )
21ancoms 268 . 2  |-  ( ( A  ~~  B  /\  C  ~<_  A )  ->  C  ~<_  B )
3 ensym 6875 . . 3  |-  ( A 
~~  B  ->  B  ~~  A )
4 domentr 6885 . . . 4  |-  ( ( C  ~<_  B  /\  B  ~~  A )  ->  C  ~<_  A )
54ancoms 268 . . 3  |-  ( ( B  ~~  A  /\  C  ~<_  B )  ->  C  ~<_  A )
63, 5sylan 283 . 2  |-  ( ( A  ~~  B  /\  C  ~<_  B )  ->  C  ~<_  A )
72, 6impbida 596 1  |-  ( A 
~~  B  ->  ( C  ~<_  A  <->  C  ~<_  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   class class class wbr 4045    ~~ cen 6827    ~<_ cdom 6828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-er 6622  df-en 6830  df-dom 6831
This theorem is referenced by:  fihashdom  10950
  Copyright terms: Public domain W3C validator