ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enen2 Unicode version

Theorem enen2 6888
Description: Equality-like theorem for equinumerosity. (Contributed by NM, 18-Dec-2003.)
Assertion
Ref Expression
enen2  |-  ( A 
~~  B  ->  ( C  ~~  A  <->  C  ~~  B ) )

Proof of Theorem enen2
StepHypRef Expression
1 entr 6829 . . 3  |-  ( ( C  ~~  A  /\  A  ~~  B )  ->  C  ~~  B )
21ancoms 268 . 2  |-  ( ( A  ~~  B  /\  C  ~~  A )  ->  C  ~~  B )
3 ensym 6826 . . 3  |-  ( A 
~~  B  ->  B  ~~  A )
4 entr 6829 . . . 4  |-  ( ( C  ~~  B  /\  B  ~~  A )  ->  C  ~~  A )
54ancoms 268 . . 3  |-  ( ( B  ~~  A  /\  C  ~~  B )  ->  C  ~~  A )
63, 5sylan 283 . 2  |-  ( ( A  ~~  B  /\  C  ~~  B )  ->  C  ~~  A )
72, 6impbida 596 1  |-  ( A 
~~  B  ->  ( C  ~~  A  <->  C  ~~  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   class class class wbr 4029    ~~ cen 6783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4462
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4322  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 5248  df-fn 5249  df-f 5250  df-f1 5251  df-fo 5252  df-f1o 5253  df-er 6578  df-en 6786
This theorem is referenced by:  php5fin  6929  carden2bex  7239  hashen  10842
  Copyright terms: Public domain W3C validator