ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  domen2 GIF version

Theorem domen2 6960
Description: Equality-like theorem for equinumerosity and dominance. (Contributed by NM, 8-Nov-2003.)
Assertion
Ref Expression
domen2 (𝐴𝐵 → (𝐶𝐴𝐶𝐵))

Proof of Theorem domen2
StepHypRef Expression
1 domentr 6901 . . 3 ((𝐶𝐴𝐴𝐵) → 𝐶𝐵)
21ancoms 268 . 2 ((𝐴𝐵𝐶𝐴) → 𝐶𝐵)
3 ensym 6891 . . 3 (𝐴𝐵𝐵𝐴)
4 domentr 6901 . . . 4 ((𝐶𝐵𝐵𝐴) → 𝐶𝐴)
54ancoms 268 . . 3 ((𝐵𝐴𝐶𝐵) → 𝐶𝐴)
63, 5sylan 283 . 2 ((𝐴𝐵𝐶𝐵) → 𝐶𝐴)
72, 6impbida 596 1 (𝐴𝐵 → (𝐶𝐴𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   class class class wbr 4054  cen 6843  cdom 6844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-br 4055  df-opab 4117  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-er 6638  df-en 6846  df-dom 6847
This theorem is referenced by:  fihashdom  10980
  Copyright terms: Public domain W3C validator