| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > domen2 | GIF version | ||
| Description: Equality-like theorem for equinumerosity and dominance. (Contributed by NM, 8-Nov-2003.) |
| Ref | Expression |
|---|---|
| domen2 | ⊢ (𝐴 ≈ 𝐵 → (𝐶 ≼ 𝐴 ↔ 𝐶 ≼ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | domentr 6901 | . . 3 ⊢ ((𝐶 ≼ 𝐴 ∧ 𝐴 ≈ 𝐵) → 𝐶 ≼ 𝐵) | |
| 2 | 1 | ancoms 268 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≼ 𝐴) → 𝐶 ≼ 𝐵) |
| 3 | ensym 6891 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
| 4 | domentr 6901 | . . . 4 ⊢ ((𝐶 ≼ 𝐵 ∧ 𝐵 ≈ 𝐴) → 𝐶 ≼ 𝐴) | |
| 5 | 4 | ancoms 268 | . . 3 ⊢ ((𝐵 ≈ 𝐴 ∧ 𝐶 ≼ 𝐵) → 𝐶 ≼ 𝐴) |
| 6 | 3, 5 | sylan 283 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≼ 𝐵) → 𝐶 ≼ 𝐴) |
| 7 | 2, 6 | impbida 596 | 1 ⊢ (𝐴 ≈ 𝐵 → (𝐶 ≼ 𝐴 ↔ 𝐶 ≼ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 class class class wbr 4054 ≈ cen 6843 ≼ cdom 6844 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-br 4055 df-opab 4117 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-er 6638 df-en 6846 df-dom 6847 |
| This theorem is referenced by: fihashdom 10980 |
| Copyright terms: Public domain | W3C validator |