ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecdmn0m GIF version

Theorem ecdmn0m 6401
Description: A representative of an inhabited equivalence class belongs to the domain of the equivalence relation. (Contributed by Jim Kingdon, 21-Aug-2019.)
Assertion
Ref Expression
ecdmn0m (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝑥 ∈ [𝐴]𝑅)
Distinct variable groups:   𝑥,𝑅   𝑥,𝐴

Proof of Theorem ecdmn0m
StepHypRef Expression
1 elex 2652 . 2 (𝐴 ∈ dom 𝑅𝐴 ∈ V)
2 ecexr 6364 . . 3 (𝑥 ∈ [𝐴]𝑅𝐴 ∈ V)
32exlimiv 1545 . 2 (∃𝑥 𝑥 ∈ [𝐴]𝑅𝐴 ∈ V)
4 eldmg 4672 . . 3 (𝐴 ∈ V → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥))
5 vex 2644 . . . . 5 𝑥 ∈ V
6 elecg 6397 . . . . 5 ((𝑥 ∈ V ∧ 𝐴 ∈ V) → (𝑥 ∈ [𝐴]𝑅𝐴𝑅𝑥))
75, 6mpan 418 . . . 4 (𝐴 ∈ V → (𝑥 ∈ [𝐴]𝑅𝐴𝑅𝑥))
87exbidv 1764 . . 3 (𝐴 ∈ V → (∃𝑥 𝑥 ∈ [𝐴]𝑅 ↔ ∃𝑥 𝐴𝑅𝑥))
94, 8bitr4d 190 . 2 (𝐴 ∈ V → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝑥 ∈ [𝐴]𝑅))
101, 3, 9pm5.21nii 661 1 (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝑥 ∈ [𝐴]𝑅)
Colors of variables: wff set class
Syntax hints:  wb 104  wex 1436  wcel 1448  Vcvv 2641   class class class wbr 3875  dom cdm 4477  [cec 6357
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ral 2380  df-rex 2381  df-v 2643  df-sbc 2863  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-br 3876  df-opab 3930  df-xp 4483  df-cnv 4485  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-ec 6361
This theorem is referenced by:  ereldm  6402  elqsn0m  6427  ecelqsdm  6429
  Copyright terms: Public domain W3C validator