| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ecdmn0m | GIF version | ||
| Description: A representative of an inhabited equivalence class belongs to the domain of the equivalence relation. (Contributed by Jim Kingdon, 21-Aug-2019.) |
| Ref | Expression |
|---|---|
| ecdmn0m | ⊢ (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝑥 ∈ [𝐴]𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2811 | . 2 ⊢ (𝐴 ∈ dom 𝑅 → 𝐴 ∈ V) | |
| 2 | ecexr 6683 | . . 3 ⊢ (𝑥 ∈ [𝐴]𝑅 → 𝐴 ∈ V) | |
| 3 | 2 | exlimiv 1644 | . 2 ⊢ (∃𝑥 𝑥 ∈ [𝐴]𝑅 → 𝐴 ∈ V) |
| 4 | eldmg 4917 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥)) | |
| 5 | vex 2802 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 6 | elecg 6718 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ 𝐴 ∈ V) → (𝑥 ∈ [𝐴]𝑅 ↔ 𝐴𝑅𝑥)) | |
| 7 | 5, 6 | mpan 424 | . . . 4 ⊢ (𝐴 ∈ V → (𝑥 ∈ [𝐴]𝑅 ↔ 𝐴𝑅𝑥)) |
| 8 | 7 | exbidv 1871 | . . 3 ⊢ (𝐴 ∈ V → (∃𝑥 𝑥 ∈ [𝐴]𝑅 ↔ ∃𝑥 𝐴𝑅𝑥)) |
| 9 | 4, 8 | bitr4d 191 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝑥 ∈ [𝐴]𝑅)) |
| 10 | 1, 3, 9 | pm5.21nii 709 | 1 ⊢ (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝑥 ∈ [𝐴]𝑅) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∃wex 1538 ∈ wcel 2200 Vcvv 2799 class class class wbr 4082 dom cdm 4718 [cec 6676 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-xp 4724 df-cnv 4726 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-ec 6680 |
| This theorem is referenced by: ereldm 6723 elqsn0m 6748 ecelqsdm 6750 divsfval 13356 |
| Copyright terms: Public domain | W3C validator |