ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecdmn0m GIF version

Theorem ecdmn0m 6479
Description: A representative of an inhabited equivalence class belongs to the domain of the equivalence relation. (Contributed by Jim Kingdon, 21-Aug-2019.)
Assertion
Ref Expression
ecdmn0m (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝑥 ∈ [𝐴]𝑅)
Distinct variable groups:   𝑥,𝑅   𝑥,𝐴

Proof of Theorem ecdmn0m
StepHypRef Expression
1 elex 2700 . 2 (𝐴 ∈ dom 𝑅𝐴 ∈ V)
2 ecexr 6442 . . 3 (𝑥 ∈ [𝐴]𝑅𝐴 ∈ V)
32exlimiv 1578 . 2 (∃𝑥 𝑥 ∈ [𝐴]𝑅𝐴 ∈ V)
4 eldmg 4742 . . 3 (𝐴 ∈ V → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥))
5 vex 2692 . . . . 5 𝑥 ∈ V
6 elecg 6475 . . . . 5 ((𝑥 ∈ V ∧ 𝐴 ∈ V) → (𝑥 ∈ [𝐴]𝑅𝐴𝑅𝑥))
75, 6mpan 421 . . . 4 (𝐴 ∈ V → (𝑥 ∈ [𝐴]𝑅𝐴𝑅𝑥))
87exbidv 1798 . . 3 (𝐴 ∈ V → (∃𝑥 𝑥 ∈ [𝐴]𝑅 ↔ ∃𝑥 𝐴𝑅𝑥))
94, 8bitr4d 190 . 2 (𝐴 ∈ V → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝑥 ∈ [𝐴]𝑅))
101, 3, 9pm5.21nii 694 1 (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝑥 ∈ [𝐴]𝑅)
Colors of variables: wff set class
Syntax hints:  wb 104  wex 1469  wcel 1481  Vcvv 2689   class class class wbr 3937  dom cdm 4547  [cec 6435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-sbc 2914  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-br 3938  df-opab 3998  df-xp 4553  df-cnv 4555  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-ec 6439
This theorem is referenced by:  ereldm  6480  elqsn0m  6505  ecelqsdm  6507
  Copyright terms: Public domain W3C validator