ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecdmn0m GIF version

Theorem ecdmn0m 6464
Description: A representative of an inhabited equivalence class belongs to the domain of the equivalence relation. (Contributed by Jim Kingdon, 21-Aug-2019.)
Assertion
Ref Expression
ecdmn0m (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝑥 ∈ [𝐴]𝑅)
Distinct variable groups:   𝑥,𝑅   𝑥,𝐴

Proof of Theorem ecdmn0m
StepHypRef Expression
1 elex 2692 . 2 (𝐴 ∈ dom 𝑅𝐴 ∈ V)
2 ecexr 6427 . . 3 (𝑥 ∈ [𝐴]𝑅𝐴 ∈ V)
32exlimiv 1577 . 2 (∃𝑥 𝑥 ∈ [𝐴]𝑅𝐴 ∈ V)
4 eldmg 4729 . . 3 (𝐴 ∈ V → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥))
5 vex 2684 . . . . 5 𝑥 ∈ V
6 elecg 6460 . . . . 5 ((𝑥 ∈ V ∧ 𝐴 ∈ V) → (𝑥 ∈ [𝐴]𝑅𝐴𝑅𝑥))
75, 6mpan 420 . . . 4 (𝐴 ∈ V → (𝑥 ∈ [𝐴]𝑅𝐴𝑅𝑥))
87exbidv 1797 . . 3 (𝐴 ∈ V → (∃𝑥 𝑥 ∈ [𝐴]𝑅 ↔ ∃𝑥 𝐴𝑅𝑥))
94, 8bitr4d 190 . 2 (𝐴 ∈ V → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝑥 ∈ [𝐴]𝑅))
101, 3, 9pm5.21nii 693 1 (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝑥 ∈ [𝐴]𝑅)
Colors of variables: wff set class
Syntax hints:  wb 104  wex 1468  wcel 1480  Vcvv 2681   class class class wbr 3924  dom cdm 4534  [cec 6420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-v 2683  df-sbc 2905  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-br 3925  df-opab 3985  df-xp 4540  df-cnv 4542  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-ec 6424
This theorem is referenced by:  ereldm  6465  elqsn0m  6490  ecelqsdm  6492
  Copyright terms: Public domain W3C validator