![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ecdmn0m | GIF version |
Description: A representative of an inhabited equivalence class belongs to the domain of the equivalence relation. (Contributed by Jim Kingdon, 21-Aug-2019.) |
Ref | Expression |
---|---|
ecdmn0m | ⊢ (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝑥 ∈ [𝐴]𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2750 | . 2 ⊢ (𝐴 ∈ dom 𝑅 → 𝐴 ∈ V) | |
2 | ecexr 6542 | . . 3 ⊢ (𝑥 ∈ [𝐴]𝑅 → 𝐴 ∈ V) | |
3 | 2 | exlimiv 1598 | . 2 ⊢ (∃𝑥 𝑥 ∈ [𝐴]𝑅 → 𝐴 ∈ V) |
4 | eldmg 4824 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥)) | |
5 | vex 2742 | . . . . 5 ⊢ 𝑥 ∈ V | |
6 | elecg 6575 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ 𝐴 ∈ V) → (𝑥 ∈ [𝐴]𝑅 ↔ 𝐴𝑅𝑥)) | |
7 | 5, 6 | mpan 424 | . . . 4 ⊢ (𝐴 ∈ V → (𝑥 ∈ [𝐴]𝑅 ↔ 𝐴𝑅𝑥)) |
8 | 7 | exbidv 1825 | . . 3 ⊢ (𝐴 ∈ V → (∃𝑥 𝑥 ∈ [𝐴]𝑅 ↔ ∃𝑥 𝐴𝑅𝑥)) |
9 | 4, 8 | bitr4d 191 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝑥 ∈ [𝐴]𝑅)) |
10 | 1, 3, 9 | pm5.21nii 704 | 1 ⊢ (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝑥 ∈ [𝐴]𝑅) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∃wex 1492 ∈ wcel 2148 Vcvv 2739 class class class wbr 4005 dom cdm 4628 [cec 6535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-sbc 2965 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-br 4006 df-opab 4067 df-xp 4634 df-cnv 4636 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-ec 6539 |
This theorem is referenced by: ereldm 6580 elqsn0m 6605 ecelqsdm 6607 |
Copyright terms: Public domain | W3C validator |