ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusin Unicode version

Theorem qusin 13158
Description: Restrict the equivalence relation in a quotient structure to the base set. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
qusin.u  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
qusin.v  |-  ( ph  ->  V  =  ( Base `  R ) )
qusin.e  |-  ( ph  ->  .~  e.  W )
qusin.r  |-  ( ph  ->  R  e.  Z )
qusin.s  |-  ( ph  ->  (  .~  " V
)  C_  V )
Assertion
Ref Expression
qusin  |-  ( ph  ->  U  =  ( R 
/.s  (  .~  i^i  ( V  X.  V ) ) ) )

Proof of Theorem qusin
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 qusin.s . . . . 5  |-  ( ph  ->  (  .~  " V
)  C_  V )
2 ecinxp 6697 . . . . 5  |-  ( ( (  .~  " V
)  C_  V  /\  x  e.  V )  ->  [ x ]  .~  =  [ x ] (  .~  i^i  ( V  X.  V ) ) )
31, 2sylan 283 . . . 4  |-  ( (
ph  /\  x  e.  V )  ->  [ x ]  .~  =  [ x ] (  .~  i^i  ( V  X.  V
) ) )
43mpteq2dva 4134 . . 3  |-  ( ph  ->  ( x  e.  V  |->  [ x ]  .~  )  =  ( x  e.  V  |->  [ x ] (  .~  i^i  ( V  X.  V
) ) ) )
54oveq1d 5959 . 2  |-  ( ph  ->  ( ( x  e.  V  |->  [ x ]  .~  )  "s  R )  =  ( ( x  e.  V  |->  [ x ] (  .~  i^i  ( V  X.  V ) ) )  "s  R ) )
6 qusin.u . . 3  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
7 qusin.v . . 3  |-  ( ph  ->  V  =  ( Base `  R ) )
8 eqid 2205 . . 3  |-  ( x  e.  V  |->  [ x ]  .~  )  =  ( x  e.  V  |->  [ x ]  .~  )
9 qusin.e . . 3  |-  ( ph  ->  .~  e.  W )
10 qusin.r . . 3  |-  ( ph  ->  R  e.  Z )
116, 7, 8, 9, 10qusval 13155 . 2  |-  ( ph  ->  U  =  ( ( x  e.  V  |->  [ x ]  .~  )  "s  R ) )
12 eqidd 2206 . . 3  |-  ( ph  ->  ( R  /.s  (  .~  i^i  ( V  X.  V
) ) )  =  ( R  /.s  (  .~  i^i  ( V  X.  V
) ) ) )
13 eqid 2205 . . 3  |-  ( x  e.  V  |->  [ x ] (  .~  i^i  ( V  X.  V
) ) )  =  ( x  e.  V  |->  [ x ] (  .~  i^i  ( V  X.  V ) ) )
14 inex1g 4180 . . . 4  |-  (  .~  e.  W  ->  (  .~  i^i  ( V  X.  V
) )  e.  _V )
159, 14syl 14 . . 3  |-  ( ph  ->  (  .~  i^i  ( V  X.  V ) )  e.  _V )
1612, 7, 13, 15, 10qusval 13155 . 2  |-  ( ph  ->  ( R  /.s  (  .~  i^i  ( V  X.  V
) ) )  =  ( ( x  e.  V  |->  [ x ]
(  .~  i^i  ( V  X.  V ) ) )  "s  R ) )
175, 11, 163eqtr4d 2248 1  |-  ( ph  ->  U  =  ( R 
/.s  (  .~  i^i  ( V  X.  V ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176   _Vcvv 2772    i^i cin 3165    C_ wss 3166    |-> cmpt 4105    X. cxp 4673   "cima 4678   ` cfv 5271  (class class class)co 5944   [cec 6618   Basecbs 12832    "s cimas 13131    /.s cqus 13132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1re 8019  ax-addrcl 8022
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-tp 3641  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-ec 6622  df-inn 9037  df-2 9095  df-3 9096  df-ndx 12835  df-slot 12836  df-base 12838  df-plusg 12922  df-mulr 12923  df-iimas 13134  df-qus 13135
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator