ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusin Unicode version

Theorem qusin 12800
Description: Restrict the equivalence relation in a quotient structure to the base set. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
qusin.u  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
qusin.v  |-  ( ph  ->  V  =  ( Base `  R ) )
qusin.e  |-  ( ph  ->  .~  e.  W )
qusin.r  |-  ( ph  ->  R  e.  Z )
qusin.s  |-  ( ph  ->  (  .~  " V
)  C_  V )
Assertion
Ref Expression
qusin  |-  ( ph  ->  U  =  ( R 
/.s  (  .~  i^i  ( V  X.  V ) ) ) )

Proof of Theorem qusin
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 qusin.s . . . . 5  |-  ( ph  ->  (  .~  " V
)  C_  V )
2 ecinxp 6635 . . . . 5  |-  ( ( (  .~  " V
)  C_  V  /\  x  e.  V )  ->  [ x ]  .~  =  [ x ] (  .~  i^i  ( V  X.  V ) ) )
31, 2sylan 283 . . . 4  |-  ( (
ph  /\  x  e.  V )  ->  [ x ]  .~  =  [ x ] (  .~  i^i  ( V  X.  V
) ) )
43mpteq2dva 4108 . . 3  |-  ( ph  ->  ( x  e.  V  |->  [ x ]  .~  )  =  ( x  e.  V  |->  [ x ] (  .~  i^i  ( V  X.  V
) ) ) )
54oveq1d 5910 . 2  |-  ( ph  ->  ( ( x  e.  V  |->  [ x ]  .~  )  "s  R )  =  ( ( x  e.  V  |->  [ x ] (  .~  i^i  ( V  X.  V ) ) )  "s  R ) )
6 qusin.u . . 3  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
7 qusin.v . . 3  |-  ( ph  ->  V  =  ( Base `  R ) )
8 eqid 2189 . . 3  |-  ( x  e.  V  |->  [ x ]  .~  )  =  ( x  e.  V  |->  [ x ]  .~  )
9 qusin.e . . 3  |-  ( ph  ->  .~  e.  W )
10 qusin.r . . 3  |-  ( ph  ->  R  e.  Z )
116, 7, 8, 9, 10qusval 12797 . 2  |-  ( ph  ->  U  =  ( ( x  e.  V  |->  [ x ]  .~  )  "s  R ) )
12 eqidd 2190 . . 3  |-  ( ph  ->  ( R  /.s  (  .~  i^i  ( V  X.  V
) ) )  =  ( R  /.s  (  .~  i^i  ( V  X.  V
) ) ) )
13 eqid 2189 . . 3  |-  ( x  e.  V  |->  [ x ] (  .~  i^i  ( V  X.  V
) ) )  =  ( x  e.  V  |->  [ x ] (  .~  i^i  ( V  X.  V ) ) )
14 inex1g 4154 . . . 4  |-  (  .~  e.  W  ->  (  .~  i^i  ( V  X.  V
) )  e.  _V )
159, 14syl 14 . . 3  |-  ( ph  ->  (  .~  i^i  ( V  X.  V ) )  e.  _V )
1612, 7, 13, 15, 10qusval 12797 . 2  |-  ( ph  ->  ( R  /.s  (  .~  i^i  ( V  X.  V
) ) )  =  ( ( x  e.  V  |->  [ x ]
(  .~  i^i  ( V  X.  V ) ) )  "s  R ) )
175, 11, 163eqtr4d 2232 1  |-  ( ph  ->  U  =  ( R 
/.s  (  .~  i^i  ( V  X.  V ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2160   _Vcvv 2752    i^i cin 3143    C_ wss 3144    |-> cmpt 4079    X. cxp 4642   "cima 4647   ` cfv 5235  (class class class)co 5895   [cec 6556   Basecbs 12511    "s cimas 12773    /.s cqus 12774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7931  ax-resscn 7932  ax-1re 7934  ax-addrcl 7937
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-tp 3615  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-ov 5898  df-oprab 5899  df-mpo 5900  df-ec 6560  df-inn 8949  df-2 9007  df-3 9008  df-ndx 12514  df-slot 12515  df-base 12517  df-plusg 12599  df-mulr 12600  df-iimas 12776  df-qus 12777
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator