ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusin Unicode version

Theorem qusin 12746
Description: Restrict the equivalence relation in a quotient structure to the base set. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
qusin.u  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
qusin.v  |-  ( ph  ->  V  =  ( Base `  R ) )
qusin.e  |-  ( ph  ->  .~  e.  W )
qusin.r  |-  ( ph  ->  R  e.  Z )
qusin.s  |-  ( ph  ->  (  .~  " V
)  C_  V )
Assertion
Ref Expression
qusin  |-  ( ph  ->  U  =  ( R 
/.s  (  .~  i^i  ( V  X.  V ) ) ) )

Proof of Theorem qusin
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 qusin.s . . . . 5  |-  ( ph  ->  (  .~  " V
)  C_  V )
2 ecinxp 6610 . . . . 5  |-  ( ( (  .~  " V
)  C_  V  /\  x  e.  V )  ->  [ x ]  .~  =  [ x ] (  .~  i^i  ( V  X.  V ) ) )
31, 2sylan 283 . . . 4  |-  ( (
ph  /\  x  e.  V )  ->  [ x ]  .~  =  [ x ] (  .~  i^i  ( V  X.  V
) ) )
43mpteq2dva 4094 . . 3  |-  ( ph  ->  ( x  e.  V  |->  [ x ]  .~  )  =  ( x  e.  V  |->  [ x ] (  .~  i^i  ( V  X.  V
) ) ) )
54oveq1d 5890 . 2  |-  ( ph  ->  ( ( x  e.  V  |->  [ x ]  .~  )  "s  R )  =  ( ( x  e.  V  |->  [ x ] (  .~  i^i  ( V  X.  V ) ) )  "s  R ) )
6 qusin.u . . 3  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
7 qusin.v . . 3  |-  ( ph  ->  V  =  ( Base `  R ) )
8 eqid 2177 . . 3  |-  ( x  e.  V  |->  [ x ]  .~  )  =  ( x  e.  V  |->  [ x ]  .~  )
9 qusin.e . . 3  |-  ( ph  ->  .~  e.  W )
10 qusin.r . . 3  |-  ( ph  ->  R  e.  Z )
116, 7, 8, 9, 10qusval 12744 . 2  |-  ( ph  ->  U  =  ( ( x  e.  V  |->  [ x ]  .~  )  "s  R ) )
12 eqidd 2178 . . 3  |-  ( ph  ->  ( R  /.s  (  .~  i^i  ( V  X.  V
) ) )  =  ( R  /.s  (  .~  i^i  ( V  X.  V
) ) ) )
13 eqid 2177 . . 3  |-  ( x  e.  V  |->  [ x ] (  .~  i^i  ( V  X.  V
) ) )  =  ( x  e.  V  |->  [ x ] (  .~  i^i  ( V  X.  V ) ) )
14 inex1g 4140 . . . 4  |-  (  .~  e.  W  ->  (  .~  i^i  ( V  X.  V
) )  e.  _V )
159, 14syl 14 . . 3  |-  ( ph  ->  (  .~  i^i  ( V  X.  V ) )  e.  _V )
1612, 7, 13, 15, 10qusval 12744 . 2  |-  ( ph  ->  ( R  /.s  (  .~  i^i  ( V  X.  V
) ) )  =  ( ( x  e.  V  |->  [ x ]
(  .~  i^i  ( V  X.  V ) ) )  "s  R ) )
175, 11, 163eqtr4d 2220 1  |-  ( ph  ->  U  =  ( R 
/.s  (  .~  i^i  ( V  X.  V ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148   _Vcvv 2738    i^i cin 3129    C_ wss 3130    |-> cmpt 4065    X. cxp 4625   "cima 4630   ` cfv 5217  (class class class)co 5875   [cec 6533   Basecbs 12462    "s cimas 12720    /.s cqus 12721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-1re 7905  ax-addrcl 7908
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-tp 3601  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-ov 5878  df-oprab 5879  df-mpo 5880  df-ec 6537  df-inn 8920  df-2 8978  df-3 8979  df-ndx 12465  df-slot 12466  df-base 12468  df-plusg 12549  df-mulr 12550  df-iimas 12723  df-qus 12724
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator