ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecinxp GIF version

Theorem ecinxp 6470
Description: Restrict the relation in an equivalence class to a base set. (Contributed by Mario Carneiro, 10-Jul-2015.)
Assertion
Ref Expression
ecinxp (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → [𝐵]𝑅 = [𝐵](𝑅 ∩ (𝐴 × 𝐴)))

Proof of Theorem ecinxp
StepHypRef Expression
1 simpr 109 . . . . . . . 8 (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → 𝐵𝐴)
21snssd 3633 . . . . . . 7 (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → {𝐵} ⊆ 𝐴)
3 df-ss 3052 . . . . . . 7 ({𝐵} ⊆ 𝐴 ↔ ({𝐵} ∩ 𝐴) = {𝐵})
42, 3sylib 121 . . . . . 6 (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → ({𝐵} ∩ 𝐴) = {𝐵})
54imaeq2d 4849 . . . . 5 (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → (𝑅 “ ({𝐵} ∩ 𝐴)) = (𝑅 “ {𝐵}))
65ineq1d 3244 . . . 4 (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → ((𝑅 “ ({𝐵} ∩ 𝐴)) ∩ 𝐴) = ((𝑅 “ {𝐵}) ∩ 𝐴))
7 imass2 4883 . . . . . . 7 ({𝐵} ⊆ 𝐴 → (𝑅 “ {𝐵}) ⊆ (𝑅𝐴))
82, 7syl 14 . . . . . 6 (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → (𝑅 “ {𝐵}) ⊆ (𝑅𝐴))
9 simpl 108 . . . . . 6 (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → (𝑅𝐴) ⊆ 𝐴)
108, 9sstrd 3075 . . . . 5 (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → (𝑅 “ {𝐵}) ⊆ 𝐴)
11 df-ss 3052 . . . . 5 ((𝑅 “ {𝐵}) ⊆ 𝐴 ↔ ((𝑅 “ {𝐵}) ∩ 𝐴) = (𝑅 “ {𝐵}))
1210, 11sylib 121 . . . 4 (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → ((𝑅 “ {𝐵}) ∩ 𝐴) = (𝑅 “ {𝐵}))
136, 12eqtr2d 2149 . . 3 (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → (𝑅 “ {𝐵}) = ((𝑅 “ ({𝐵} ∩ 𝐴)) ∩ 𝐴))
14 imainrect 4952 . . 3 ((𝑅 ∩ (𝐴 × 𝐴)) “ {𝐵}) = ((𝑅 “ ({𝐵} ∩ 𝐴)) ∩ 𝐴)
1513, 14syl6eqr 2166 . 2 (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → (𝑅 “ {𝐵}) = ((𝑅 ∩ (𝐴 × 𝐴)) “ {𝐵}))
16 df-ec 6397 . 2 [𝐵]𝑅 = (𝑅 “ {𝐵})
17 df-ec 6397 . 2 [𝐵](𝑅 ∩ (𝐴 × 𝐴)) = ((𝑅 ∩ (𝐴 × 𝐴)) “ {𝐵})
1815, 16, 173eqtr4g 2173 1 (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → [𝐵]𝑅 = [𝐵](𝑅 ∩ (𝐴 × 𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1314  wcel 1463  cin 3038  wss 3039  {csn 3495   × cxp 4505  cima 4510  [cec 6393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-rex 2397  df-v 2660  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-br 3898  df-opab 3958  df-xp 4513  df-rel 4514  df-cnv 4515  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-ec 6397
This theorem is referenced by:  qsinxp  6471  nqnq0pi  7210
  Copyright terms: Public domain W3C validator