ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecovass Unicode version

Theorem ecovass 6610
Description: Lemma used to transfer an associative law via an equivalence relation. In most cases ecoviass 6611 will be more useful. (Contributed by NM, 31-Aug-1995.) (Revised by David Abernethy, 4-Jun-2013.)
Hypotheses
Ref Expression
ecovass.1  |-  D  =  ( ( S  X.  S ) /.  .~  )
ecovass.2  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( z  e.  S  /\  w  e.  S ) )  -> 
( [ <. x ,  y >. ]  .~  .+ 
[ <. z ,  w >. ]  .~  )  =  [ <. G ,  H >. ]  .~  )
ecovass.3  |-  ( ( ( z  e.  S  /\  w  e.  S
)  /\  ( v  e.  S  /\  u  e.  S ) )  -> 
( [ <. z ,  w >. ]  .~  .+  [
<. v ,  u >. ]  .~  )  =  [ <. N ,  Q >. ]  .~  )
ecovass.4  |-  ( ( ( G  e.  S  /\  H  e.  S
)  /\  ( v  e.  S  /\  u  e.  S ) )  -> 
( [ <. G ,  H >. ]  .~  .+  [
<. v ,  u >. ]  .~  )  =  [ <. J ,  K >. ]  .~  )
ecovass.5  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( N  e.  S  /\  Q  e.  S ) )  -> 
( [ <. x ,  y >. ]  .~  .+ 
[ <. N ,  Q >. ]  .~  )  =  [ <. L ,  M >. ]  .~  )
ecovass.6  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( z  e.  S  /\  w  e.  S ) )  -> 
( G  e.  S  /\  H  e.  S
) )
ecovass.7  |-  ( ( ( z  e.  S  /\  w  e.  S
)  /\  ( v  e.  S  /\  u  e.  S ) )  -> 
( N  e.  S  /\  Q  e.  S
) )
ecovass.8  |-  J  =  L
ecovass.9  |-  K  =  M
Assertion
Ref Expression
ecovass  |-  ( ( A  e.  D  /\  B  e.  D  /\  C  e.  D )  ->  ( ( A  .+  B )  .+  C
)  =  ( A 
.+  ( B  .+  C ) ) )
Distinct variable groups:    x, y, z, w, v, u, A   
z, B, w, v, u    x, C, y, z, w, v, u   
x,  .+ , y, z, w, v, u    x,  .~ , y, z, w, v, u   
x, S, y, z, w, v, u    z, D, w, v, u
Allowed substitution hints:    B( x, y)    D( x, y)    Q( x, y, z, w, v, u)    G( x, y, z, w, v, u)    H( x, y, z, w, v, u)    J( x, y, z, w, v, u)    K( x, y, z, w, v, u)    L( x, y, z, w, v, u)    M( x, y, z, w, v, u)    N( x, y, z, w, v, u)

Proof of Theorem ecovass
StepHypRef Expression
1 ecovass.1 . 2  |-  D  =  ( ( S  X.  S ) /.  .~  )
2 oveq1 5849 . . . 4  |-  ( [
<. x ,  y >. ]  .~  =  A  -> 
( [ <. x ,  y >. ]  .~  .+ 
[ <. z ,  w >. ]  .~  )  =  ( A  .+  [ <. z ,  w >. ]  .~  ) )
32oveq1d 5857 . . 3  |-  ( [
<. x ,  y >. ]  .~  =  A  -> 
( ( [ <. x ,  y >. ]  .~  .+ 
[ <. z ,  w >. ]  .~  )  .+  [
<. v ,  u >. ]  .~  )  =  ( ( A  .+  [ <. z ,  w >. ]  .~  )  .+  [ <. v ,  u >. ]  .~  ) )
4 oveq1 5849 . . 3  |-  ( [
<. x ,  y >. ]  .~  =  A  -> 
( [ <. x ,  y >. ]  .~  .+  ( [ <. z ,  w >. ]  .~  .+  [
<. v ,  u >. ]  .~  ) )  =  ( A  .+  ( [ <. z ,  w >. ]  .~  .+  [ <. v ,  u >. ]  .~  ) ) )
53, 4eqeq12d 2180 . 2  |-  ( [
<. x ,  y >. ]  .~  =  A  -> 
( ( ( [
<. x ,  y >. ]  .~  .+  [ <. z ,  w >. ]  .~  )  .+  [ <. v ,  u >. ]  .~  )  =  ( [ <. x ,  y >. ]  .~  .+  ( [ <. z ,  w >. ]  .~  .+  [
<. v ,  u >. ]  .~  ) )  <->  ( ( A  .+  [ <. z ,  w >. ]  .~  )  .+  [ <. v ,  u >. ]  .~  )  =  ( A  .+  ( [ <. z ,  w >. ]  .~  .+  [ <. v ,  u >. ]  .~  ) ) ) )
6 oveq2 5850 . . . 4  |-  ( [
<. z ,  w >. ]  .~  =  B  -> 
( A  .+  [ <. z ,  w >. ]  .~  )  =  ( A  .+  B ) )
76oveq1d 5857 . . 3  |-  ( [
<. z ,  w >. ]  .~  =  B  -> 
( ( A  .+  [
<. z ,  w >. ]  .~  )  .+  [ <. v ,  u >. ]  .~  )  =  ( ( A  .+  B
)  .+  [ <. v ,  u >. ]  .~  )
)
8 oveq1 5849 . . . 4  |-  ( [
<. z ,  w >. ]  .~  =  B  -> 
( [ <. z ,  w >. ]  .~  .+  [
<. v ,  u >. ]  .~  )  =  ( B  .+  [ <. v ,  u >. ]  .~  ) )
98oveq2d 5858 . . 3  |-  ( [
<. z ,  w >. ]  .~  =  B  -> 
( A  .+  ( [ <. z ,  w >. ]  .~  .+  [ <. v ,  u >. ]  .~  ) )  =  ( A  .+  ( B  .+  [ <. v ,  u >. ]  .~  )
) )
107, 9eqeq12d 2180 . 2  |-  ( [
<. z ,  w >. ]  .~  =  B  -> 
( ( ( A 
.+  [ <. z ,  w >. ]  .~  )  .+  [ <. v ,  u >. ]  .~  )  =  ( A  .+  ( [ <. z ,  w >. ]  .~  .+  [ <. v ,  u >. ]  .~  ) )  <->  ( ( A  .+  B )  .+  [
<. v ,  u >. ]  .~  )  =  ( A  .+  ( B 
.+  [ <. v ,  u >. ]  .~  )
) ) )
11 oveq2 5850 . . 3  |-  ( [
<. v ,  u >. ]  .~  =  C  -> 
( ( A  .+  B )  .+  [ <. v ,  u >. ]  .~  )  =  ( ( A  .+  B
)  .+  C )
)
12 oveq2 5850 . . . 4  |-  ( [
<. v ,  u >. ]  .~  =  C  -> 
( B  .+  [ <. v ,  u >. ]  .~  )  =  ( B  .+  C ) )
1312oveq2d 5858 . . 3  |-  ( [
<. v ,  u >. ]  .~  =  C  -> 
( A  .+  ( B  .+  [ <. v ,  u >. ]  .~  )
)  =  ( A 
.+  ( B  .+  C ) ) )
1411, 13eqeq12d 2180 . 2  |-  ( [
<. v ,  u >. ]  .~  =  C  -> 
( ( ( A 
.+  B )  .+  [
<. v ,  u >. ]  .~  )  =  ( A  .+  ( B 
.+  [ <. v ,  u >. ]  .~  )
)  <->  ( ( A 
.+  B )  .+  C )  =  ( A  .+  ( B 
.+  C ) ) ) )
15 ecovass.8 . . . 4  |-  J  =  L
16 ecovass.9 . . . 4  |-  K  =  M
17 opeq12 3760 . . . . 5  |-  ( ( J  =  L  /\  K  =  M )  -> 
<. J ,  K >.  = 
<. L ,  M >. )
1817eceq1d 6537 . . . 4  |-  ( ( J  =  L  /\  K  =  M )  ->  [ <. J ,  K >. ]  .~  =  [ <. L ,  M >. ]  .~  )
1915, 16, 18mp2an 423 . . 3  |-  [ <. J ,  K >. ]  .~  =  [ <. L ,  M >. ]  .~
20 ecovass.2 . . . . . . 7  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( z  e.  S  /\  w  e.  S ) )  -> 
( [ <. x ,  y >. ]  .~  .+ 
[ <. z ,  w >. ]  .~  )  =  [ <. G ,  H >. ]  .~  )
2120oveq1d 5857 . . . . . 6  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( z  e.  S  /\  w  e.  S ) )  -> 
( ( [ <. x ,  y >. ]  .~  .+ 
[ <. z ,  w >. ]  .~  )  .+  [
<. v ,  u >. ]  .~  )  =  ( [ <. G ,  H >. ]  .~  .+  [ <. v ,  u >. ]  .~  ) )
2221adantr 274 . . . . 5  |-  ( ( ( ( x  e.  S  /\  y  e.  S )  /\  (
z  e.  S  /\  w  e.  S )
)  /\  ( v  e.  S  /\  u  e.  S ) )  -> 
( ( [ <. x ,  y >. ]  .~  .+ 
[ <. z ,  w >. ]  .~  )  .+  [
<. v ,  u >. ]  .~  )  =  ( [ <. G ,  H >. ]  .~  .+  [ <. v ,  u >. ]  .~  ) )
23 ecovass.6 . . . . . 6  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( z  e.  S  /\  w  e.  S ) )  -> 
( G  e.  S  /\  H  e.  S
) )
24 ecovass.4 . . . . . 6  |-  ( ( ( G  e.  S  /\  H  e.  S
)  /\  ( v  e.  S  /\  u  e.  S ) )  -> 
( [ <. G ,  H >. ]  .~  .+  [
<. v ,  u >. ]  .~  )  =  [ <. J ,  K >. ]  .~  )
2523, 24sylan 281 . . . . 5  |-  ( ( ( ( x  e.  S  /\  y  e.  S )  /\  (
z  e.  S  /\  w  e.  S )
)  /\  ( v  e.  S  /\  u  e.  S ) )  -> 
( [ <. G ,  H >. ]  .~  .+  [
<. v ,  u >. ]  .~  )  =  [ <. J ,  K >. ]  .~  )
2622, 25eqtrd 2198 . . . 4  |-  ( ( ( ( x  e.  S  /\  y  e.  S )  /\  (
z  e.  S  /\  w  e.  S )
)  /\  ( v  e.  S  /\  u  e.  S ) )  -> 
( ( [ <. x ,  y >. ]  .~  .+ 
[ <. z ,  w >. ]  .~  )  .+  [
<. v ,  u >. ]  .~  )  =  [ <. J ,  K >. ]  .~  )
27263impa 1184 . . 3  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( z  e.  S  /\  w  e.  S )  /\  (
v  e.  S  /\  u  e.  S )
)  ->  ( ( [ <. x ,  y
>. ]  .~  .+  [ <. z ,  w >. ]  .~  )  .+  [ <. v ,  u >. ]  .~  )  =  [ <. J ,  K >. ]  .~  )
28 ecovass.3 . . . . . . 7  |-  ( ( ( z  e.  S  /\  w  e.  S
)  /\  ( v  e.  S  /\  u  e.  S ) )  -> 
( [ <. z ,  w >. ]  .~  .+  [
<. v ,  u >. ]  .~  )  =  [ <. N ,  Q >. ]  .~  )
2928oveq2d 5858 . . . . . 6  |-  ( ( ( z  e.  S  /\  w  e.  S
)  /\  ( v  e.  S  /\  u  e.  S ) )  -> 
( [ <. x ,  y >. ]  .~  .+  ( [ <. z ,  w >. ]  .~  .+  [
<. v ,  u >. ]  .~  ) )  =  ( [ <. x ,  y >. ]  .~  .+ 
[ <. N ,  Q >. ]  .~  ) )
3029adantl 275 . . . . 5  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( (
z  e.  S  /\  w  e.  S )  /\  ( v  e.  S  /\  u  e.  S
) ) )  -> 
( [ <. x ,  y >. ]  .~  .+  ( [ <. z ,  w >. ]  .~  .+  [
<. v ,  u >. ]  .~  ) )  =  ( [ <. x ,  y >. ]  .~  .+ 
[ <. N ,  Q >. ]  .~  ) )
31 ecovass.7 . . . . . 6  |-  ( ( ( z  e.  S  /\  w  e.  S
)  /\  ( v  e.  S  /\  u  e.  S ) )  -> 
( N  e.  S  /\  Q  e.  S
) )
32 ecovass.5 . . . . . 6  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( N  e.  S  /\  Q  e.  S ) )  -> 
( [ <. x ,  y >. ]  .~  .+ 
[ <. N ,  Q >. ]  .~  )  =  [ <. L ,  M >. ]  .~  )
3331, 32sylan2 284 . . . . 5  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( (
z  e.  S  /\  w  e.  S )  /\  ( v  e.  S  /\  u  e.  S
) ) )  -> 
( [ <. x ,  y >. ]  .~  .+ 
[ <. N ,  Q >. ]  .~  )  =  [ <. L ,  M >. ]  .~  )
3430, 33eqtrd 2198 . . . 4  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( (
z  e.  S  /\  w  e.  S )  /\  ( v  e.  S  /\  u  e.  S
) ) )  -> 
( [ <. x ,  y >. ]  .~  .+  ( [ <. z ,  w >. ]  .~  .+  [
<. v ,  u >. ]  .~  ) )  =  [ <. L ,  M >. ]  .~  )
35343impb 1189 . . 3  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( z  e.  S  /\  w  e.  S )  /\  (
v  e.  S  /\  u  e.  S )
)  ->  ( [ <. x ,  y >. ]  .~  .+  ( [
<. z ,  w >. ]  .~  .+  [ <. v ,  u >. ]  .~  ) )  =  [ <. L ,  M >. ]  .~  )
3619, 27, 353eqtr4a 2225 . 2  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( z  e.  S  /\  w  e.  S )  /\  (
v  e.  S  /\  u  e.  S )
)  ->  ( ( [ <. x ,  y
>. ]  .~  .+  [ <. z ,  w >. ]  .~  )  .+  [ <. v ,  u >. ]  .~  )  =  ( [ <. x ,  y
>. ]  .~  .+  ( [ <. z ,  w >. ]  .~  .+  [ <. v ,  u >. ]  .~  ) ) )
371, 5, 10, 14, 363ecoptocl 6590 1  |-  ( ( A  e.  D  /\  B  e.  D  /\  C  e.  D )  ->  ( ( A  .+  B )  .+  C
)  =  ( A 
.+  ( B  .+  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 968    = wceq 1343    e. wcel 2136   <.cop 3579    X. cxp 4602  (class class class)co 5842   [cec 6499   /.cqs 6500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-xp 4610  df-cnv 4612  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fv 5196  df-ov 5845  df-ec 6503  df-qs 6507
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator