| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ecovass | Unicode version | ||
| Description: Lemma used to transfer an associative law via an equivalence relation. In most cases ecoviass 6755 will be more useful. (Contributed by NM, 31-Aug-1995.) (Revised by David Abernethy, 4-Jun-2013.) |
| Ref | Expression |
|---|---|
| ecovass.1 |
|
| ecovass.2 |
|
| ecovass.3 |
|
| ecovass.4 |
|
| ecovass.5 |
|
| ecovass.6 |
|
| ecovass.7 |
|
| ecovass.8 |
|
| ecovass.9 |
|
| Ref | Expression |
|---|---|
| ecovass |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecovass.1 |
. 2
| |
| 2 | oveq1 5974 |
. . . 4
| |
| 3 | 2 | oveq1d 5982 |
. . 3
|
| 4 | oveq1 5974 |
. . 3
| |
| 5 | 3, 4 | eqeq12d 2222 |
. 2
|
| 6 | oveq2 5975 |
. . . 4
| |
| 7 | 6 | oveq1d 5982 |
. . 3
|
| 8 | oveq1 5974 |
. . . 4
| |
| 9 | 8 | oveq2d 5983 |
. . 3
|
| 10 | 7, 9 | eqeq12d 2222 |
. 2
|
| 11 | oveq2 5975 |
. . 3
| |
| 12 | oveq2 5975 |
. . . 4
| |
| 13 | 12 | oveq2d 5983 |
. . 3
|
| 14 | 11, 13 | eqeq12d 2222 |
. 2
|
| 15 | ecovass.8 |
. . . 4
| |
| 16 | ecovass.9 |
. . . 4
| |
| 17 | opeq12 3835 |
. . . . 5
| |
| 18 | 17 | eceq1d 6679 |
. . . 4
|
| 19 | 15, 16, 18 | mp2an 426 |
. . 3
|
| 20 | ecovass.2 |
. . . . . . 7
| |
| 21 | 20 | oveq1d 5982 |
. . . . . 6
|
| 22 | 21 | adantr 276 |
. . . . 5
|
| 23 | ecovass.6 |
. . . . . 6
| |
| 24 | ecovass.4 |
. . . . . 6
| |
| 25 | 23, 24 | sylan 283 |
. . . . 5
|
| 26 | 22, 25 | eqtrd 2240 |
. . . 4
|
| 27 | 26 | 3impa 1197 |
. . 3
|
| 28 | ecovass.3 |
. . . . . . 7
| |
| 29 | 28 | oveq2d 5983 |
. . . . . 6
|
| 30 | 29 | adantl 277 |
. . . . 5
|
| 31 | ecovass.7 |
. . . . . 6
| |
| 32 | ecovass.5 |
. . . . . 6
| |
| 33 | 31, 32 | sylan2 286 |
. . . . 5
|
| 34 | 30, 33 | eqtrd 2240 |
. . . 4
|
| 35 | 34 | 3impb 1202 |
. . 3
|
| 36 | 19, 27, 35 | 3eqtr4a 2266 |
. 2
|
| 37 | 1, 5, 10, 14, 36 | 3ecoptocl 6734 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-xp 4699 df-cnv 4701 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fv 5298 df-ov 5970 df-ec 6645 df-qs 6649 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |