Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3ecoptocl | Unicode version |
Description: Implicit substitution of classes for equivalence classes of ordered pairs. (Contributed by NM, 9-Aug-1995.) |
Ref | Expression |
---|---|
3ecoptocl.1 | |
3ecoptocl.2 | |
3ecoptocl.3 | |
3ecoptocl.4 | |
3ecoptocl.5 |
Ref | Expression |
---|---|
3ecoptocl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ecoptocl.1 | . . . 4 | |
2 | 3ecoptocl.3 | . . . . 5 | |
3 | 2 | imbi2d 229 | . . . 4 |
4 | 3ecoptocl.4 | . . . . 5 | |
5 | 4 | imbi2d 229 | . . . 4 |
6 | 3ecoptocl.2 | . . . . . . 7 | |
7 | 6 | imbi2d 229 | . . . . . 6 |
8 | 3ecoptocl.5 | . . . . . . 7 | |
9 | 8 | 3expib 1195 | . . . . . 6 |
10 | 1, 7, 9 | ecoptocl 6582 | . . . . 5 |
11 | 10 | com12 30 | . . . 4 |
12 | 1, 3, 5, 11 | 2ecoptocl 6583 | . . 3 |
13 | 12 | com12 30 | . 2 |
14 | 13 | 3impib 1190 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 967 wceq 1342 wcel 2135 cop 3576 cxp 4599 cec 6493 cqs 6494 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-14 2138 ax-ext 2146 ax-sep 4097 ax-pow 4150 ax-pr 4184 |
This theorem depends on definitions: df-bi 116 df-3an 969 df-tru 1345 df-nf 1448 df-sb 1750 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ral 2447 df-rex 2448 df-v 2726 df-un 3118 df-in 3120 df-ss 3127 df-pw 3558 df-sn 3579 df-pr 3580 df-op 3582 df-br 3980 df-opab 4041 df-xp 4607 df-cnv 4609 df-dm 4611 df-rn 4612 df-res 4613 df-ima 4614 df-ec 6497 df-qs 6501 |
This theorem is referenced by: ecovass 6604 ecoviass 6605 ecovdi 6606 ecovidi 6607 ltsonq 7333 ltanqg 7335 ltmnqg 7336 lttrsr 7697 ltsosr 7699 ltasrg 7705 mulextsr1 7716 |
Copyright terms: Public domain | W3C validator |