Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3ecoptocl | Unicode version |
Description: Implicit substitution of classes for equivalence classes of ordered pairs. (Contributed by NM, 9-Aug-1995.) |
Ref | Expression |
---|---|
3ecoptocl.1 | |
3ecoptocl.2 | |
3ecoptocl.3 | |
3ecoptocl.4 | |
3ecoptocl.5 |
Ref | Expression |
---|---|
3ecoptocl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ecoptocl.1 | . . . 4 | |
2 | 3ecoptocl.3 | . . . . 5 | |
3 | 2 | imbi2d 229 | . . . 4 |
4 | 3ecoptocl.4 | . . . . 5 | |
5 | 4 | imbi2d 229 | . . . 4 |
6 | 3ecoptocl.2 | . . . . . . 7 | |
7 | 6 | imbi2d 229 | . . . . . 6 |
8 | 3ecoptocl.5 | . . . . . . 7 | |
9 | 8 | 3expib 1196 | . . . . . 6 |
10 | 1, 7, 9 | ecoptocl 6588 | . . . . 5 |
11 | 10 | com12 30 | . . . 4 |
12 | 1, 3, 5, 11 | 2ecoptocl 6589 | . . 3 |
13 | 12 | com12 30 | . 2 |
14 | 13 | 3impib 1191 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 968 wceq 1343 wcel 2136 cop 3579 cxp 4602 cec 6499 cqs 6500 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-xp 4610 df-cnv 4612 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-ec 6503 df-qs 6507 |
This theorem is referenced by: ecovass 6610 ecoviass 6611 ecovdi 6612 ecovidi 6613 ltsonq 7339 ltanqg 7341 ltmnqg 7342 lttrsr 7703 ltsosr 7705 ltasrg 7711 mulextsr1 7722 |
Copyright terms: Public domain | W3C validator |