| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ecoviass | Unicode version | ||
| Description: Lemma used to transfer an associative law via an equivalence relation. (Contributed by Jim Kingdon, 16-Sep-2019.) | 
| Ref | Expression | 
|---|---|
| ecoviass.1 | 
 | 
| ecoviass.2 | 
 | 
| ecoviass.3 | 
 | 
| ecoviass.4 | 
 | 
| ecoviass.5 | 
 | 
| ecoviass.6 | 
 | 
| ecoviass.7 | 
 | 
| ecoviass.8 | 
 | 
| ecoviass.9 | 
 | 
| Ref | Expression | 
|---|---|
| ecoviass | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ecoviass.1 | 
. 2
 | |
| 2 | oveq1 5929 | 
. . . 4
 | |
| 3 | 2 | oveq1d 5937 | 
. . 3
 | 
| 4 | oveq1 5929 | 
. . 3
 | |
| 5 | 3, 4 | eqeq12d 2211 | 
. 2
 | 
| 6 | oveq2 5930 | 
. . . 4
 | |
| 7 | 6 | oveq1d 5937 | 
. . 3
 | 
| 8 | oveq1 5929 | 
. . . 4
 | |
| 9 | 8 | oveq2d 5938 | 
. . 3
 | 
| 10 | 7, 9 | eqeq12d 2211 | 
. 2
 | 
| 11 | oveq2 5930 | 
. . 3
 | |
| 12 | oveq2 5930 | 
. . . 4
 | |
| 13 | 12 | oveq2d 5938 | 
. . 3
 | 
| 14 | 11, 13 | eqeq12d 2211 | 
. 2
 | 
| 15 | ecoviass.8 | 
. . . 4
 | |
| 16 | ecoviass.9 | 
. . . 4
 | |
| 17 | opeq12 3810 | 
. . . . 5
 | |
| 18 | 17 | eceq1d 6628 | 
. . . 4
 | 
| 19 | 15, 16, 18 | syl2anc 411 | 
. . 3
 | 
| 20 | ecoviass.2 | 
. . . . . . 7
 | |
| 21 | 20 | oveq1d 5937 | 
. . . . . 6
 | 
| 22 | 21 | adantr 276 | 
. . . . 5
 | 
| 23 | ecoviass.6 | 
. . . . . 6
 | |
| 24 | ecoviass.4 | 
. . . . . 6
 | |
| 25 | 23, 24 | sylan 283 | 
. . . . 5
 | 
| 26 | 22, 25 | eqtrd 2229 | 
. . . 4
 | 
| 27 | 26 | 3impa 1196 | 
. . 3
 | 
| 28 | ecoviass.3 | 
. . . . . . 7
 | |
| 29 | 28 | oveq2d 5938 | 
. . . . . 6
 | 
| 30 | 29 | adantl 277 | 
. . . . 5
 | 
| 31 | ecoviass.7 | 
. . . . . 6
 | |
| 32 | ecoviass.5 | 
. . . . . 6
 | |
| 33 | 31, 32 | sylan2 286 | 
. . . . 5
 | 
| 34 | 30, 33 | eqtrd 2229 | 
. . . 4
 | 
| 35 | 34 | 3impb 1201 | 
. . 3
 | 
| 36 | 19, 27, 35 | 3eqtr4d 2239 | 
. 2
 | 
| 37 | 1, 5, 10, 14, 36 | 3ecoptocl 6683 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-cnv 4671 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fv 5266 df-ov 5925 df-ec 6594 df-qs 6598 | 
| This theorem is referenced by: addassnqg 7449 mulassnqg 7451 addasssrg 7823 mulasssrg 7825 axaddass 7939 axmulass 7940 | 
| Copyright terms: Public domain | W3C validator |