Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ecoviass | Unicode version |
Description: Lemma used to transfer an associative law via an equivalence relation. (Contributed by Jim Kingdon, 16-Sep-2019.) |
Ref | Expression |
---|---|
ecoviass.1 | |
ecoviass.2 | |
ecoviass.3 | |
ecoviass.4 | |
ecoviass.5 | |
ecoviass.6 | |
ecoviass.7 | |
ecoviass.8 | |
ecoviass.9 |
Ref | Expression |
---|---|
ecoviass |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecoviass.1 | . 2 | |
2 | oveq1 5860 | . . . 4 | |
3 | 2 | oveq1d 5868 | . . 3 |
4 | oveq1 5860 | . . 3 | |
5 | 3, 4 | eqeq12d 2185 | . 2 |
6 | oveq2 5861 | . . . 4 | |
7 | 6 | oveq1d 5868 | . . 3 |
8 | oveq1 5860 | . . . 4 | |
9 | 8 | oveq2d 5869 | . . 3 |
10 | 7, 9 | eqeq12d 2185 | . 2 |
11 | oveq2 5861 | . . 3 | |
12 | oveq2 5861 | . . . 4 | |
13 | 12 | oveq2d 5869 | . . 3 |
14 | 11, 13 | eqeq12d 2185 | . 2 |
15 | ecoviass.8 | . . . 4 | |
16 | ecoviass.9 | . . . 4 | |
17 | opeq12 3767 | . . . . 5 | |
18 | 17 | eceq1d 6549 | . . . 4 |
19 | 15, 16, 18 | syl2anc 409 | . . 3 |
20 | ecoviass.2 | . . . . . . 7 | |
21 | 20 | oveq1d 5868 | . . . . . 6 |
22 | 21 | adantr 274 | . . . . 5 |
23 | ecoviass.6 | . . . . . 6 | |
24 | ecoviass.4 | . . . . . 6 | |
25 | 23, 24 | sylan 281 | . . . . 5 |
26 | 22, 25 | eqtrd 2203 | . . . 4 |
27 | 26 | 3impa 1189 | . . 3 |
28 | ecoviass.3 | . . . . . . 7 | |
29 | 28 | oveq2d 5869 | . . . . . 6 |
30 | 29 | adantl 275 | . . . . 5 |
31 | ecoviass.7 | . . . . . 6 | |
32 | ecoviass.5 | . . . . . 6 | |
33 | 31, 32 | sylan2 284 | . . . . 5 |
34 | 30, 33 | eqtrd 2203 | . . . 4 |
35 | 34 | 3impb 1194 | . . 3 |
36 | 19, 27, 35 | 3eqtr4d 2213 | . 2 |
37 | 1, 5, 10, 14, 36 | 3ecoptocl 6602 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 973 wceq 1348 wcel 2141 cop 3586 cxp 4609 (class class class)co 5853 cec 6511 cqs 6512 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-xp 4617 df-cnv 4619 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fv 5206 df-ov 5856 df-ec 6515 df-qs 6519 |
This theorem is referenced by: addassnqg 7344 mulassnqg 7346 addasssrg 7718 mulasssrg 7720 axaddass 7834 axmulass 7835 |
Copyright terms: Public domain | W3C validator |