| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ecoviass | Unicode version | ||
| Description: Lemma used to transfer an associative law via an equivalence relation. (Contributed by Jim Kingdon, 16-Sep-2019.) |
| Ref | Expression |
|---|---|
| ecoviass.1 |
|
| ecoviass.2 |
|
| ecoviass.3 |
|
| ecoviass.4 |
|
| ecoviass.5 |
|
| ecoviass.6 |
|
| ecoviass.7 |
|
| ecoviass.8 |
|
| ecoviass.9 |
|
| Ref | Expression |
|---|---|
| ecoviass |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecoviass.1 |
. 2
| |
| 2 | oveq1 5932 |
. . . 4
| |
| 3 | 2 | oveq1d 5940 |
. . 3
|
| 4 | oveq1 5932 |
. . 3
| |
| 5 | 3, 4 | eqeq12d 2211 |
. 2
|
| 6 | oveq2 5933 |
. . . 4
| |
| 7 | 6 | oveq1d 5940 |
. . 3
|
| 8 | oveq1 5932 |
. . . 4
| |
| 9 | 8 | oveq2d 5941 |
. . 3
|
| 10 | 7, 9 | eqeq12d 2211 |
. 2
|
| 11 | oveq2 5933 |
. . 3
| |
| 12 | oveq2 5933 |
. . . 4
| |
| 13 | 12 | oveq2d 5941 |
. . 3
|
| 14 | 11, 13 | eqeq12d 2211 |
. 2
|
| 15 | ecoviass.8 |
. . . 4
| |
| 16 | ecoviass.9 |
. . . 4
| |
| 17 | opeq12 3811 |
. . . . 5
| |
| 18 | 17 | eceq1d 6637 |
. . . 4
|
| 19 | 15, 16, 18 | syl2anc 411 |
. . 3
|
| 20 | ecoviass.2 |
. . . . . . 7
| |
| 21 | 20 | oveq1d 5940 |
. . . . . 6
|
| 22 | 21 | adantr 276 |
. . . . 5
|
| 23 | ecoviass.6 |
. . . . . 6
| |
| 24 | ecoviass.4 |
. . . . . 6
| |
| 25 | 23, 24 | sylan 283 |
. . . . 5
|
| 26 | 22, 25 | eqtrd 2229 |
. . . 4
|
| 27 | 26 | 3impa 1196 |
. . 3
|
| 28 | ecoviass.3 |
. . . . . . 7
| |
| 29 | 28 | oveq2d 5941 |
. . . . . 6
|
| 30 | 29 | adantl 277 |
. . . . 5
|
| 31 | ecoviass.7 |
. . . . . 6
| |
| 32 | ecoviass.5 |
. . . . . 6
| |
| 33 | 31, 32 | sylan2 286 |
. . . . 5
|
| 34 | 30, 33 | eqtrd 2229 |
. . . 4
|
| 35 | 34 | 3impb 1201 |
. . 3
|
| 36 | 19, 27, 35 | 3eqtr4d 2239 |
. 2
|
| 37 | 1, 5, 10, 14, 36 | 3ecoptocl 6692 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-xp 4670 df-cnv 4672 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fv 5267 df-ov 5928 df-ec 6603 df-qs 6607 |
| This theorem is referenced by: addassnqg 7466 mulassnqg 7468 addasssrg 7840 mulasssrg 7842 axaddass 7956 axmulass 7957 |
| Copyright terms: Public domain | W3C validator |