ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecoviass Unicode version

Theorem ecoviass 6699
Description: Lemma used to transfer an associative law via an equivalence relation. (Contributed by Jim Kingdon, 16-Sep-2019.)
Hypotheses
Ref Expression
ecoviass.1  |-  D  =  ( ( S  X.  S ) /.  .~  )
ecoviass.2  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( z  e.  S  /\  w  e.  S ) )  -> 
( [ <. x ,  y >. ]  .~  .+ 
[ <. z ,  w >. ]  .~  )  =  [ <. G ,  H >. ]  .~  )
ecoviass.3  |-  ( ( ( z  e.  S  /\  w  e.  S
)  /\  ( v  e.  S  /\  u  e.  S ) )  -> 
( [ <. z ,  w >. ]  .~  .+  [
<. v ,  u >. ]  .~  )  =  [ <. N ,  Q >. ]  .~  )
ecoviass.4  |-  ( ( ( G  e.  S  /\  H  e.  S
)  /\  ( v  e.  S  /\  u  e.  S ) )  -> 
( [ <. G ,  H >. ]  .~  .+  [
<. v ,  u >. ]  .~  )  =  [ <. J ,  K >. ]  .~  )
ecoviass.5  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( N  e.  S  /\  Q  e.  S ) )  -> 
( [ <. x ,  y >. ]  .~  .+ 
[ <. N ,  Q >. ]  .~  )  =  [ <. L ,  M >. ]  .~  )
ecoviass.6  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( z  e.  S  /\  w  e.  S ) )  -> 
( G  e.  S  /\  H  e.  S
) )
ecoviass.7  |-  ( ( ( z  e.  S  /\  w  e.  S
)  /\  ( v  e.  S  /\  u  e.  S ) )  -> 
( N  e.  S  /\  Q  e.  S
) )
ecoviass.8  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( z  e.  S  /\  w  e.  S )  /\  (
v  e.  S  /\  u  e.  S )
)  ->  J  =  L )
ecoviass.9  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( z  e.  S  /\  w  e.  S )  /\  (
v  e.  S  /\  u  e.  S )
)  ->  K  =  M )
Assertion
Ref Expression
ecoviass  |-  ( ( A  e.  D  /\  B  e.  D  /\  C  e.  D )  ->  ( ( A  .+  B )  .+  C
)  =  ( A 
.+  ( B  .+  C ) ) )
Distinct variable groups:    x, y, z, w, v, u, A   
z, B, w, v, u    x, C, y, z, w, v, u   
x,  .+ , y, z, w, v, u    x,  .~ , y, z, w, v, u   
x, S, y, z, w, v, u    z, D, w, v, u
Allowed substitution hints:    B( x, y)    D( x, y)    Q( x, y, z, w, v, u)    G( x, y, z, w, v, u)    H( x, y, z, w, v, u)    J( x, y, z, w, v, u)    K( x, y, z, w, v, u)    L( x, y, z, w, v, u)    M( x, y, z, w, v, u)    N( x, y, z, w, v, u)

Proof of Theorem ecoviass
StepHypRef Expression
1 ecoviass.1 . 2  |-  D  =  ( ( S  X.  S ) /.  .~  )
2 oveq1 5925 . . . 4  |-  ( [
<. x ,  y >. ]  .~  =  A  -> 
( [ <. x ,  y >. ]  .~  .+ 
[ <. z ,  w >. ]  .~  )  =  ( A  .+  [ <. z ,  w >. ]  .~  ) )
32oveq1d 5933 . . 3  |-  ( [
<. x ,  y >. ]  .~  =  A  -> 
( ( [ <. x ,  y >. ]  .~  .+ 
[ <. z ,  w >. ]  .~  )  .+  [
<. v ,  u >. ]  .~  )  =  ( ( A  .+  [ <. z ,  w >. ]  .~  )  .+  [ <. v ,  u >. ]  .~  ) )
4 oveq1 5925 . . 3  |-  ( [
<. x ,  y >. ]  .~  =  A  -> 
( [ <. x ,  y >. ]  .~  .+  ( [ <. z ,  w >. ]  .~  .+  [
<. v ,  u >. ]  .~  ) )  =  ( A  .+  ( [ <. z ,  w >. ]  .~  .+  [ <. v ,  u >. ]  .~  ) ) )
53, 4eqeq12d 2208 . 2  |-  ( [
<. x ,  y >. ]  .~  =  A  -> 
( ( ( [
<. x ,  y >. ]  .~  .+  [ <. z ,  w >. ]  .~  )  .+  [ <. v ,  u >. ]  .~  )  =  ( [ <. x ,  y >. ]  .~  .+  ( [ <. z ,  w >. ]  .~  .+  [
<. v ,  u >. ]  .~  ) )  <->  ( ( A  .+  [ <. z ,  w >. ]  .~  )  .+  [ <. v ,  u >. ]  .~  )  =  ( A  .+  ( [ <. z ,  w >. ]  .~  .+  [ <. v ,  u >. ]  .~  ) ) ) )
6 oveq2 5926 . . . 4  |-  ( [
<. z ,  w >. ]  .~  =  B  -> 
( A  .+  [ <. z ,  w >. ]  .~  )  =  ( A  .+  B ) )
76oveq1d 5933 . . 3  |-  ( [
<. z ,  w >. ]  .~  =  B  -> 
( ( A  .+  [
<. z ,  w >. ]  .~  )  .+  [ <. v ,  u >. ]  .~  )  =  ( ( A  .+  B
)  .+  [ <. v ,  u >. ]  .~  )
)
8 oveq1 5925 . . . 4  |-  ( [
<. z ,  w >. ]  .~  =  B  -> 
( [ <. z ,  w >. ]  .~  .+  [
<. v ,  u >. ]  .~  )  =  ( B  .+  [ <. v ,  u >. ]  .~  ) )
98oveq2d 5934 . . 3  |-  ( [
<. z ,  w >. ]  .~  =  B  -> 
( A  .+  ( [ <. z ,  w >. ]  .~  .+  [ <. v ,  u >. ]  .~  ) )  =  ( A  .+  ( B  .+  [ <. v ,  u >. ]  .~  )
) )
107, 9eqeq12d 2208 . 2  |-  ( [
<. z ,  w >. ]  .~  =  B  -> 
( ( ( A 
.+  [ <. z ,  w >. ]  .~  )  .+  [ <. v ,  u >. ]  .~  )  =  ( A  .+  ( [ <. z ,  w >. ]  .~  .+  [ <. v ,  u >. ]  .~  ) )  <->  ( ( A  .+  B )  .+  [
<. v ,  u >. ]  .~  )  =  ( A  .+  ( B 
.+  [ <. v ,  u >. ]  .~  )
) ) )
11 oveq2 5926 . . 3  |-  ( [
<. v ,  u >. ]  .~  =  C  -> 
( ( A  .+  B )  .+  [ <. v ,  u >. ]  .~  )  =  ( ( A  .+  B
)  .+  C )
)
12 oveq2 5926 . . . 4  |-  ( [
<. v ,  u >. ]  .~  =  C  -> 
( B  .+  [ <. v ,  u >. ]  .~  )  =  ( B  .+  C ) )
1312oveq2d 5934 . . 3  |-  ( [
<. v ,  u >. ]  .~  =  C  -> 
( A  .+  ( B  .+  [ <. v ,  u >. ]  .~  )
)  =  ( A 
.+  ( B  .+  C ) ) )
1411, 13eqeq12d 2208 . 2  |-  ( [
<. v ,  u >. ]  .~  =  C  -> 
( ( ( A 
.+  B )  .+  [
<. v ,  u >. ]  .~  )  =  ( A  .+  ( B 
.+  [ <. v ,  u >. ]  .~  )
)  <->  ( ( A 
.+  B )  .+  C )  =  ( A  .+  ( B 
.+  C ) ) ) )
15 ecoviass.8 . . . 4  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( z  e.  S  /\  w  e.  S )  /\  (
v  e.  S  /\  u  e.  S )
)  ->  J  =  L )
16 ecoviass.9 . . . 4  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( z  e.  S  /\  w  e.  S )  /\  (
v  e.  S  /\  u  e.  S )
)  ->  K  =  M )
17 opeq12 3806 . . . . 5  |-  ( ( J  =  L  /\  K  =  M )  -> 
<. J ,  K >.  = 
<. L ,  M >. )
1817eceq1d 6623 . . . 4  |-  ( ( J  =  L  /\  K  =  M )  ->  [ <. J ,  K >. ]  .~  =  [ <. L ,  M >. ]  .~  )
1915, 16, 18syl2anc 411 . . 3  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( z  e.  S  /\  w  e.  S )  /\  (
v  e.  S  /\  u  e.  S )
)  ->  [ <. J ,  K >. ]  .~  =  [ <. L ,  M >. ]  .~  )
20 ecoviass.2 . . . . . . 7  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( z  e.  S  /\  w  e.  S ) )  -> 
( [ <. x ,  y >. ]  .~  .+ 
[ <. z ,  w >. ]  .~  )  =  [ <. G ,  H >. ]  .~  )
2120oveq1d 5933 . . . . . 6  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( z  e.  S  /\  w  e.  S ) )  -> 
( ( [ <. x ,  y >. ]  .~  .+ 
[ <. z ,  w >. ]  .~  )  .+  [
<. v ,  u >. ]  .~  )  =  ( [ <. G ,  H >. ]  .~  .+  [ <. v ,  u >. ]  .~  ) )
2221adantr 276 . . . . 5  |-  ( ( ( ( x  e.  S  /\  y  e.  S )  /\  (
z  e.  S  /\  w  e.  S )
)  /\  ( v  e.  S  /\  u  e.  S ) )  -> 
( ( [ <. x ,  y >. ]  .~  .+ 
[ <. z ,  w >. ]  .~  )  .+  [
<. v ,  u >. ]  .~  )  =  ( [ <. G ,  H >. ]  .~  .+  [ <. v ,  u >. ]  .~  ) )
23 ecoviass.6 . . . . . 6  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( z  e.  S  /\  w  e.  S ) )  -> 
( G  e.  S  /\  H  e.  S
) )
24 ecoviass.4 . . . . . 6  |-  ( ( ( G  e.  S  /\  H  e.  S
)  /\  ( v  e.  S  /\  u  e.  S ) )  -> 
( [ <. G ,  H >. ]  .~  .+  [
<. v ,  u >. ]  .~  )  =  [ <. J ,  K >. ]  .~  )
2523, 24sylan 283 . . . . 5  |-  ( ( ( ( x  e.  S  /\  y  e.  S )  /\  (
z  e.  S  /\  w  e.  S )
)  /\  ( v  e.  S  /\  u  e.  S ) )  -> 
( [ <. G ,  H >. ]  .~  .+  [
<. v ,  u >. ]  .~  )  =  [ <. J ,  K >. ]  .~  )
2622, 25eqtrd 2226 . . . 4  |-  ( ( ( ( x  e.  S  /\  y  e.  S )  /\  (
z  e.  S  /\  w  e.  S )
)  /\  ( v  e.  S  /\  u  e.  S ) )  -> 
( ( [ <. x ,  y >. ]  .~  .+ 
[ <. z ,  w >. ]  .~  )  .+  [
<. v ,  u >. ]  .~  )  =  [ <. J ,  K >. ]  .~  )
27263impa 1196 . . 3  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( z  e.  S  /\  w  e.  S )  /\  (
v  e.  S  /\  u  e.  S )
)  ->  ( ( [ <. x ,  y
>. ]  .~  .+  [ <. z ,  w >. ]  .~  )  .+  [ <. v ,  u >. ]  .~  )  =  [ <. J ,  K >. ]  .~  )
28 ecoviass.3 . . . . . . 7  |-  ( ( ( z  e.  S  /\  w  e.  S
)  /\  ( v  e.  S  /\  u  e.  S ) )  -> 
( [ <. z ,  w >. ]  .~  .+  [
<. v ,  u >. ]  .~  )  =  [ <. N ,  Q >. ]  .~  )
2928oveq2d 5934 . . . . . 6  |-  ( ( ( z  e.  S  /\  w  e.  S
)  /\  ( v  e.  S  /\  u  e.  S ) )  -> 
( [ <. x ,  y >. ]  .~  .+  ( [ <. z ,  w >. ]  .~  .+  [
<. v ,  u >. ]  .~  ) )  =  ( [ <. x ,  y >. ]  .~  .+ 
[ <. N ,  Q >. ]  .~  ) )
3029adantl 277 . . . . 5  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( (
z  e.  S  /\  w  e.  S )  /\  ( v  e.  S  /\  u  e.  S
) ) )  -> 
( [ <. x ,  y >. ]  .~  .+  ( [ <. z ,  w >. ]  .~  .+  [
<. v ,  u >. ]  .~  ) )  =  ( [ <. x ,  y >. ]  .~  .+ 
[ <. N ,  Q >. ]  .~  ) )
31 ecoviass.7 . . . . . 6  |-  ( ( ( z  e.  S  /\  w  e.  S
)  /\  ( v  e.  S  /\  u  e.  S ) )  -> 
( N  e.  S  /\  Q  e.  S
) )
32 ecoviass.5 . . . . . 6  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( N  e.  S  /\  Q  e.  S ) )  -> 
( [ <. x ,  y >. ]  .~  .+ 
[ <. N ,  Q >. ]  .~  )  =  [ <. L ,  M >. ]  .~  )
3331, 32sylan2 286 . . . . 5  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( (
z  e.  S  /\  w  e.  S )  /\  ( v  e.  S  /\  u  e.  S
) ) )  -> 
( [ <. x ,  y >. ]  .~  .+ 
[ <. N ,  Q >. ]  .~  )  =  [ <. L ,  M >. ]  .~  )
3430, 33eqtrd 2226 . . . 4  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( (
z  e.  S  /\  w  e.  S )  /\  ( v  e.  S  /\  u  e.  S
) ) )  -> 
( [ <. x ,  y >. ]  .~  .+  ( [ <. z ,  w >. ]  .~  .+  [
<. v ,  u >. ]  .~  ) )  =  [ <. L ,  M >. ]  .~  )
35343impb 1201 . . 3  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( z  e.  S  /\  w  e.  S )  /\  (
v  e.  S  /\  u  e.  S )
)  ->  ( [ <. x ,  y >. ]  .~  .+  ( [
<. z ,  w >. ]  .~  .+  [ <. v ,  u >. ]  .~  ) )  =  [ <. L ,  M >. ]  .~  )
3619, 27, 353eqtr4d 2236 . 2  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( z  e.  S  /\  w  e.  S )  /\  (
v  e.  S  /\  u  e.  S )
)  ->  ( ( [ <. x ,  y
>. ]  .~  .+  [ <. z ,  w >. ]  .~  )  .+  [ <. v ,  u >. ]  .~  )  =  ( [ <. x ,  y
>. ]  .~  .+  ( [ <. z ,  w >. ]  .~  .+  [ <. v ,  u >. ]  .~  ) ) )
371, 5, 10, 14, 363ecoptocl 6678 1  |-  ( ( A  e.  D  /\  B  e.  D  /\  C  e.  D )  ->  ( ( A  .+  B )  .+  C
)  =  ( A 
.+  ( B  .+  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164   <.cop 3621    X. cxp 4657  (class class class)co 5918   [cec 6585   /.cqs 6586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-xp 4665  df-cnv 4667  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fv 5262  df-ov 5921  df-ec 6589  df-qs 6593
This theorem is referenced by:  addassnqg  7442  mulassnqg  7444  addasssrg  7816  mulasssrg  7818  axaddass  7932  axmulass  7933
  Copyright terms: Public domain W3C validator