ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fproddccvg Unicode version

Theorem fproddccvg 11344
Description: The sequence of partial products of a finite product converges to the whole product. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypotheses
Ref Expression
prodmo.1  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )
prodmo.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
prodrbdc.dc  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
prodrb.3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
fprodcvg.4  |-  ( ph  ->  A  C_  ( M ... N ) )
Assertion
Ref Expression
fproddccvg  |-  ( ph  ->  seq M (  x.  ,  F )  ~~>  (  seq M (  x.  ,  F ) `  N
) )
Distinct variable groups:    A, k    k, F    ph, k    k, M   
k, N
Allowed substitution hint:    B( k)

Proof of Theorem fproddccvg
Dummy variables  n  v  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2139 . 2  |-  ( ZZ>= `  N )  =  (
ZZ>= `  N )
2 prodrb.3 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
3 eluzelz 9338 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
42, 3syl 14 . 2  |-  ( ph  ->  N  e.  ZZ )
5 seqex 10223 . . 3  |-  seq M
(  x.  ,  F
)  e.  _V
65a1i 9 . 2  |-  ( ph  ->  seq M (  x.  ,  F )  e. 
_V )
7 eqid 2139 . . . 4  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
8 eluzel2 9334 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
92, 8syl 14 . . . 4  |-  ( ph  ->  M  e.  ZZ )
10 eluzelz 9338 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  ZZ )
1110adantl 275 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  k  e.  ZZ )
12 iftrue 3479 . . . . . . . . 9  |-  ( k  e.  A  ->  if ( k  e.  A ,  B ,  1 )  =  B )
1312adantl 275 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  M )
)  /\  k  e.  A )  ->  if ( k  e.  A ,  B ,  1 )  =  B )
14 prodmo.2 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
1514adantlr 468 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  M )
)  /\  k  e.  A )  ->  B  e.  CC )
1613, 15eqeltrd 2216 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  M )
)  /\  k  e.  A )  ->  if ( k  e.  A ,  B ,  1 )  e.  CC )
17 iffalse 3482 . . . . . . . . 9  |-  ( -.  k  e.  A  ->  if ( k  e.  A ,  B ,  1 )  =  1 )
18 ax-1cn 7716 . . . . . . . . 9  |-  1  e.  CC
1917, 18eqeltrdi 2230 . . . . . . . 8  |-  ( -.  k  e.  A  ->  if ( k  e.  A ,  B ,  1 )  e.  CC )
2019adantl 275 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  M )
)  /\  -.  k  e.  A )  ->  if ( k  e.  A ,  B ,  1 )  e.  CC )
21 prodrbdc.dc . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
22 exmiddc 821 . . . . . . . 8  |-  (DECID  k  e.  A  ->  ( k  e.  A  \/  -.  k  e.  A )
)
2321, 22syl 14 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( k  e.  A  \/  -.  k  e.  A )
)
2416, 20, 23mpjaodan 787 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  if (
k  e.  A ,  B ,  1 )  e.  CC )
25 prodmo.1 . . . . . . 7  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )
2625fvmpt2 5504 . . . . . 6  |-  ( ( k  e.  ZZ  /\  if ( k  e.  A ,  B ,  1 )  e.  CC )  -> 
( F `  k
)  =  if ( k  e.  A ,  B ,  1 ) )
2711, 24, 26syl2anc 408 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  =  if ( k  e.  A ,  B ,  1 ) )
2827, 24eqeltrd 2216 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
297, 9, 28prodf 11310 . . 3  |-  ( ph  ->  seq M (  x.  ,  F ) : ( ZZ>= `  M ) --> CC )
3029, 2ffvelrnd 5556 . 2  |-  ( ph  ->  (  seq M (  x.  ,  F ) `
 N )  e.  CC )
31 mulid1 7766 . . . . 5  |-  ( m  e.  CC  ->  (
m  x.  1 )  =  m )
3231adantl 275 . . . 4  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  N )
)  /\  m  e.  CC )  ->  ( m  x.  1 )  =  m )
332adantr 274 . . . 4  |-  ( (
ph  /\  n  e.  ( ZZ>= `  N )
)  ->  N  e.  ( ZZ>= `  M )
)
34 simpr 109 . . . 4  |-  ( (
ph  /\  n  e.  ( ZZ>= `  N )
)  ->  n  e.  ( ZZ>= `  N )
)
359adantr 274 . . . . . 6  |-  ( (
ph  /\  n  e.  ( ZZ>= `  N )
)  ->  M  e.  ZZ )
3628adantlr 468 . . . . . 6  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  N )
)  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
377, 35, 36prodf 11310 . . . . 5  |-  ( (
ph  /\  n  e.  ( ZZ>= `  N )
)  ->  seq M (  x.  ,  F ) : ( ZZ>= `  M
) --> CC )
3837, 33ffvelrnd 5556 . . . 4  |-  ( (
ph  /\  n  e.  ( ZZ>= `  N )
)  ->  (  seq M (  x.  ,  F ) `  N
)  e.  CC )
39 elfzuz 9805 . . . . . 6  |-  ( m  e.  ( ( N  +  1 ) ... n )  ->  m  e.  ( ZZ>= `  ( N  +  1 ) ) )
40 eluzelz 9338 . . . . . . . . 9  |-  ( m  e.  ( ZZ>= `  ( N  +  1 ) )  ->  m  e.  ZZ )
4140adantl 275 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  m  e.  ZZ )
42 fprodcvg.4 . . . . . . . . . . . 12  |-  ( ph  ->  A  C_  ( M ... N ) )
4342sseld 3096 . . . . . . . . . . 11  |-  ( ph  ->  ( m  e.  A  ->  m  e.  ( M ... N ) ) )
44 fznuz 9885 . . . . . . . . . . 11  |-  ( m  e.  ( M ... N )  ->  -.  m  e.  ( ZZ>= `  ( N  +  1
) ) )
4543, 44syl6 33 . . . . . . . . . 10  |-  ( ph  ->  ( m  e.  A  ->  -.  m  e.  (
ZZ>= `  ( N  + 
1 ) ) ) )
4645con2d 613 . . . . . . . . 9  |-  ( ph  ->  ( m  e.  (
ZZ>= `  ( N  + 
1 ) )  ->  -.  m  e.  A
) )
4746imp 123 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  -.  m  e.  A )
4841, 47eldifd 3081 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  m  e.  ( ZZ  \  A ) )
49 fveqeq2 5430 . . . . . . . 8  |-  ( k  =  m  ->  (
( F `  k
)  =  1  <->  ( F `  m )  =  1 ) )
50 eldifi 3198 . . . . . . . . . 10  |-  ( k  e.  ( ZZ  \  A )  ->  k  e.  ZZ )
51 eldifn 3199 . . . . . . . . . . . 12  |-  ( k  e.  ( ZZ  \  A )  ->  -.  k  e.  A )
5251, 17syl 14 . . . . . . . . . . 11  |-  ( k  e.  ( ZZ  \  A )  ->  if ( k  e.  A ,  B ,  1 )  =  1 )
5352, 18eqeltrdi 2230 . . . . . . . . . 10  |-  ( k  e.  ( ZZ  \  A )  ->  if ( k  e.  A ,  B ,  1 )  e.  CC )
5450, 53, 26syl2anc 408 . . . . . . . . 9  |-  ( k  e.  ( ZZ  \  A )  ->  ( F `  k )  =  if ( k  e.  A ,  B , 
1 ) )
5554, 52eqtrd 2172 . . . . . . . 8  |-  ( k  e.  ( ZZ  \  A )  ->  ( F `  k )  =  1 )
5649, 55vtoclga 2752 . . . . . . 7  |-  ( m  e.  ( ZZ  \  A )  ->  ( F `  m )  =  1 )
5748, 56syl 14 . . . . . 6  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( F `  m )  =  1 )
5839, 57sylan2 284 . . . . 5  |-  ( (
ph  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  ( F `  m )  =  1 )
5958adantlr 468 . . . 4  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  N )
)  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  ( F `  m )  =  1 )
60 fveq2 5421 . . . . . 6  |-  ( k  =  m  ->  ( F `  k )  =  ( F `  m ) )
6160eleq1d 2208 . . . . 5  |-  ( k  =  m  ->  (
( F `  k
)  e.  CC  <->  ( F `  m )  e.  CC ) )
6228ralrimiva 2505 . . . . . 6  |-  ( ph  ->  A. k  e.  (
ZZ>= `  M ) ( F `  k )  e.  CC )
6362ad2antrr 479 . . . . 5  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  N )
)  /\  m  e.  ( ZZ>= `  M )
)  ->  A. k  e.  ( ZZ>= `  M )
( F `  k
)  e.  CC )
64 simpr 109 . . . . 5  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  N )
)  /\  m  e.  ( ZZ>= `  M )
)  ->  m  e.  ( ZZ>= `  M )
)
6561, 63, 64rspcdva 2794 . . . 4  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  N )
)  /\  m  e.  ( ZZ>= `  M )
)  ->  ( F `  m )  e.  CC )
66 mulcl 7750 . . . . 5  |-  ( ( m  e.  CC  /\  v  e.  CC )  ->  ( m  x.  v
)  e.  CC )
6766adantl 275 . . . 4  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  N )
)  /\  ( m  e.  CC  /\  v  e.  CC ) )  -> 
( m  x.  v
)  e.  CC )
6832, 33, 34, 38, 59, 65, 67seq3id2 10285 . . 3  |-  ( (
ph  /\  n  e.  ( ZZ>= `  N )
)  ->  (  seq M (  x.  ,  F ) `  N
)  =  (  seq M (  x.  ,  F ) `  n
) )
6968eqcomd 2145 . 2  |-  ( (
ph  /\  n  e.  ( ZZ>= `  N )
)  ->  (  seq M (  x.  ,  F ) `  n
)  =  (  seq M (  x.  ,  F ) `  N
) )
701, 4, 6, 30, 69climconst 11062 1  |-  ( ph  ->  seq M (  x.  ,  F )  ~~>  (  seq M (  x.  ,  F ) `  N
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 697  DECID wdc 819    = wceq 1331    e. wcel 1480   A.wral 2416   _Vcvv 2686    \ cdif 3068    C_ wss 3071   ifcif 3474   class class class wbr 3929    |-> cmpt 3989   ` cfv 5123  (class class class)co 5774   CCcc 7621   1c1 7624    + caddc 7626    x. cmul 7628   ZZcz 9057   ZZ>=cuz 9329   ...cfz 9793    seqcseq 10221    ~~> cli 11050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7714  ax-resscn 7715  ax-1cn 7716  ax-1re 7717  ax-icn 7718  ax-addcl 7719  ax-addrcl 7720  ax-mulcl 7721  ax-mulrcl 7722  ax-addcom 7723  ax-mulcom 7724  ax-addass 7725  ax-mulass 7726  ax-distr 7727  ax-i2m1 7728  ax-0lt1 7729  ax-1rid 7730  ax-0id 7731  ax-rnegex 7732  ax-precex 7733  ax-cnre 7734  ax-pre-ltirr 7735  ax-pre-ltwlin 7736  ax-pre-lttrn 7737  ax-pre-apti 7738  ax-pre-ltadd 7739  ax-pre-mulgt0 7740  ax-pre-mulext 7741
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7805  df-mnf 7806  df-xr 7807  df-ltxr 7808  df-le 7809  df-sub 7938  df-neg 7939  df-reap 8340  df-ap 8347  df-div 8436  df-inn 8724  df-2 8782  df-n0 8981  df-z 9058  df-uz 9330  df-rp 9445  df-fz 9794  df-seqfrec 10222  df-exp 10296  df-cj 10617  df-rsqrt 10773  df-abs 10774  df-clim 11051
This theorem is referenced by:  prodmodclem2a  11348
  Copyright terms: Public domain W3C validator