ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fproddccvg Unicode version

Theorem fproddccvg 11737
Description: The sequence of partial products of a finite product converges to the whole product. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypotheses
Ref Expression
prodmo.1  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )
prodmo.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
prodrbdc.dc  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
prodrb.3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
fprodcvg.4  |-  ( ph  ->  A  C_  ( M ... N ) )
Assertion
Ref Expression
fproddccvg  |-  ( ph  ->  seq M (  x.  ,  F )  ~~>  (  seq M (  x.  ,  F ) `  N
) )
Distinct variable groups:    A, k    k, F    ph, k    k, M   
k, N
Allowed substitution hint:    B( k)

Proof of Theorem fproddccvg
Dummy variables  n  v  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2196 . 2  |-  ( ZZ>= `  N )  =  (
ZZ>= `  N )
2 prodrb.3 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
3 eluzelz 9610 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
42, 3syl 14 . 2  |-  ( ph  ->  N  e.  ZZ )
5 seqex 10541 . . 3  |-  seq M
(  x.  ,  F
)  e.  _V
65a1i 9 . 2  |-  ( ph  ->  seq M (  x.  ,  F )  e. 
_V )
7 eqid 2196 . . . 4  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
8 eluzel2 9606 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
92, 8syl 14 . . . 4  |-  ( ph  ->  M  e.  ZZ )
10 eluzelz 9610 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  ZZ )
1110adantl 277 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  k  e.  ZZ )
12 iftrue 3566 . . . . . . . . 9  |-  ( k  e.  A  ->  if ( k  e.  A ,  B ,  1 )  =  B )
1312adantl 277 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  M )
)  /\  k  e.  A )  ->  if ( k  e.  A ,  B ,  1 )  =  B )
14 prodmo.2 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
1514adantlr 477 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  M )
)  /\  k  e.  A )  ->  B  e.  CC )
1613, 15eqeltrd 2273 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  M )
)  /\  k  e.  A )  ->  if ( k  e.  A ,  B ,  1 )  e.  CC )
17 iffalse 3569 . . . . . . . . 9  |-  ( -.  k  e.  A  ->  if ( k  e.  A ,  B ,  1 )  =  1 )
18 ax-1cn 7972 . . . . . . . . 9  |-  1  e.  CC
1917, 18eqeltrdi 2287 . . . . . . . 8  |-  ( -.  k  e.  A  ->  if ( k  e.  A ,  B ,  1 )  e.  CC )
2019adantl 277 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  M )
)  /\  -.  k  e.  A )  ->  if ( k  e.  A ,  B ,  1 )  e.  CC )
21 prodrbdc.dc . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
22 exmiddc 837 . . . . . . . 8  |-  (DECID  k  e.  A  ->  ( k  e.  A  \/  -.  k  e.  A )
)
2321, 22syl 14 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( k  e.  A  \/  -.  k  e.  A )
)
2416, 20, 23mpjaodan 799 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  if (
k  e.  A ,  B ,  1 )  e.  CC )
25 prodmo.1 . . . . . . 7  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )
2625fvmpt2 5645 . . . . . 6  |-  ( ( k  e.  ZZ  /\  if ( k  e.  A ,  B ,  1 )  e.  CC )  -> 
( F `  k
)  =  if ( k  e.  A ,  B ,  1 ) )
2711, 24, 26syl2anc 411 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  =  if ( k  e.  A ,  B ,  1 ) )
2827, 24eqeltrd 2273 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
297, 9, 28prodf 11703 . . 3  |-  ( ph  ->  seq M (  x.  ,  F ) : ( ZZ>= `  M ) --> CC )
3029, 2ffvelcdmd 5698 . 2  |-  ( ph  ->  (  seq M (  x.  ,  F ) `
 N )  e.  CC )
31 mulrid 8023 . . . . 5  |-  ( m  e.  CC  ->  (
m  x.  1 )  =  m )
3231adantl 277 . . . 4  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  N )
)  /\  m  e.  CC )  ->  ( m  x.  1 )  =  m )
332adantr 276 . . . 4  |-  ( (
ph  /\  n  e.  ( ZZ>= `  N )
)  ->  N  e.  ( ZZ>= `  M )
)
34 simpr 110 . . . 4  |-  ( (
ph  /\  n  e.  ( ZZ>= `  N )
)  ->  n  e.  ( ZZ>= `  N )
)
359adantr 276 . . . . . 6  |-  ( (
ph  /\  n  e.  ( ZZ>= `  N )
)  ->  M  e.  ZZ )
3628adantlr 477 . . . . . 6  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  N )
)  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
377, 35, 36prodf 11703 . . . . 5  |-  ( (
ph  /\  n  e.  ( ZZ>= `  N )
)  ->  seq M (  x.  ,  F ) : ( ZZ>= `  M
) --> CC )
3837, 33ffvelcdmd 5698 . . . 4  |-  ( (
ph  /\  n  e.  ( ZZ>= `  N )
)  ->  (  seq M (  x.  ,  F ) `  N
)  e.  CC )
39 elfzuz 10096 . . . . . 6  |-  ( m  e.  ( ( N  +  1 ) ... n )  ->  m  e.  ( ZZ>= `  ( N  +  1 ) ) )
40 eluzelz 9610 . . . . . . . . 9  |-  ( m  e.  ( ZZ>= `  ( N  +  1 ) )  ->  m  e.  ZZ )
4140adantl 277 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  m  e.  ZZ )
42 fprodcvg.4 . . . . . . . . . . . 12  |-  ( ph  ->  A  C_  ( M ... N ) )
4342sseld 3182 . . . . . . . . . . 11  |-  ( ph  ->  ( m  e.  A  ->  m  e.  ( M ... N ) ) )
44 fznuz 10177 . . . . . . . . . . 11  |-  ( m  e.  ( M ... N )  ->  -.  m  e.  ( ZZ>= `  ( N  +  1
) ) )
4543, 44syl6 33 . . . . . . . . . 10  |-  ( ph  ->  ( m  e.  A  ->  -.  m  e.  (
ZZ>= `  ( N  + 
1 ) ) ) )
4645con2d 625 . . . . . . . . 9  |-  ( ph  ->  ( m  e.  (
ZZ>= `  ( N  + 
1 ) )  ->  -.  m  e.  A
) )
4746imp 124 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  -.  m  e.  A )
4841, 47eldifd 3167 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  m  e.  ( ZZ  \  A ) )
49 fveqeq2 5567 . . . . . . . 8  |-  ( k  =  m  ->  (
( F `  k
)  =  1  <->  ( F `  m )  =  1 ) )
50 eldifi 3285 . . . . . . . . . 10  |-  ( k  e.  ( ZZ  \  A )  ->  k  e.  ZZ )
51 eldifn 3286 . . . . . . . . . . . 12  |-  ( k  e.  ( ZZ  \  A )  ->  -.  k  e.  A )
5251, 17syl 14 . . . . . . . . . . 11  |-  ( k  e.  ( ZZ  \  A )  ->  if ( k  e.  A ,  B ,  1 )  =  1 )
5352, 18eqeltrdi 2287 . . . . . . . . . 10  |-  ( k  e.  ( ZZ  \  A )  ->  if ( k  e.  A ,  B ,  1 )  e.  CC )
5450, 53, 26syl2anc 411 . . . . . . . . 9  |-  ( k  e.  ( ZZ  \  A )  ->  ( F `  k )  =  if ( k  e.  A ,  B , 
1 ) )
5554, 52eqtrd 2229 . . . . . . . 8  |-  ( k  e.  ( ZZ  \  A )  ->  ( F `  k )  =  1 )
5649, 55vtoclga 2830 . . . . . . 7  |-  ( m  e.  ( ZZ  \  A )  ->  ( F `  m )  =  1 )
5748, 56syl 14 . . . . . 6  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( F `  m )  =  1 )
5839, 57sylan2 286 . . . . 5  |-  ( (
ph  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  ( F `  m )  =  1 )
5958adantlr 477 . . . 4  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  N )
)  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  ( F `  m )  =  1 )
60 fveq2 5558 . . . . . 6  |-  ( k  =  m  ->  ( F `  k )  =  ( F `  m ) )
6160eleq1d 2265 . . . . 5  |-  ( k  =  m  ->  (
( F `  k
)  e.  CC  <->  ( F `  m )  e.  CC ) )
6228ralrimiva 2570 . . . . . 6  |-  ( ph  ->  A. k  e.  (
ZZ>= `  M ) ( F `  k )  e.  CC )
6362ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  N )
)  /\  m  e.  ( ZZ>= `  M )
)  ->  A. k  e.  ( ZZ>= `  M )
( F `  k
)  e.  CC )
64 simpr 110 . . . . 5  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  N )
)  /\  m  e.  ( ZZ>= `  M )
)  ->  m  e.  ( ZZ>= `  M )
)
6561, 63, 64rspcdva 2873 . . . 4  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  N )
)  /\  m  e.  ( ZZ>= `  M )
)  ->  ( F `  m )  e.  CC )
66 mulcl 8006 . . . . 5  |-  ( ( m  e.  CC  /\  v  e.  CC )  ->  ( m  x.  v
)  e.  CC )
6766adantl 277 . . . 4  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  N )
)  /\  ( m  e.  CC  /\  v  e.  CC ) )  -> 
( m  x.  v
)  e.  CC )
6832, 33, 34, 38, 59, 65, 67seq3id2 10618 . . 3  |-  ( (
ph  /\  n  e.  ( ZZ>= `  N )
)  ->  (  seq M (  x.  ,  F ) `  N
)  =  (  seq M (  x.  ,  F ) `  n
) )
6968eqcomd 2202 . 2  |-  ( (
ph  /\  n  e.  ( ZZ>= `  N )
)  ->  (  seq M (  x.  ,  F ) `  n
)  =  (  seq M (  x.  ,  F ) `  N
) )
701, 4, 6, 30, 69climconst 11455 1  |-  ( ph  ->  seq M (  x.  ,  F )  ~~>  (  seq M (  x.  ,  F ) `  N
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709  DECID wdc 835    = wceq 1364    e. wcel 2167   A.wral 2475   _Vcvv 2763    \ cdif 3154    C_ wss 3157   ifcif 3561   class class class wbr 4033    |-> cmpt 4094   ` cfv 5258  (class class class)co 5922   CCcc 7877   1c1 7880    + caddc 7882    x. cmul 7884   ZZcz 9326   ZZ>=cuz 9601   ...cfz 10083    seqcseq 10539    ~~> cli 11443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-n0 9250  df-z 9327  df-uz 9602  df-rp 9729  df-fz 10084  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-rsqrt 11163  df-abs 11164  df-clim 11444
This theorem is referenced by:  prodmodclem2a  11741
  Copyright terms: Public domain W3C validator