ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  binomlem Unicode version

Theorem binomlem 11284
Description: Lemma for binom 11285 (binomial theorem). Inductive step. (Contributed by NM, 6-Dec-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
binomlem.1  |-  ( ph  ->  A  e.  CC )
binomlem.2  |-  ( ph  ->  B  e.  CC )
binomlem.3  |-  ( ph  ->  N  e.  NN0 )
binomlem.4  |-  ( ps 
->  ( ( A  +  B ) ^ N
)  =  sum_ k  e.  ( 0 ... N
) ( ( N  _C  k )  x.  ( ( A ^
( N  -  k
) )  x.  ( B ^ k ) ) ) )
Assertion
Ref Expression
binomlem  |-  ( (
ph  /\  ps )  ->  ( ( A  +  B ) ^ ( N  +  1 ) )  =  sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( ( N  +  1 )  _C  k )  x.  ( ( A ^
( ( N  + 
1 )  -  k
) )  x.  ( B ^ k ) ) ) )
Distinct variable groups:    A, k    B, k    k, N    ph, k
Allowed substitution hint:    ps( k)

Proof of Theorem binomlem
Dummy variables  j  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 binomlem.4 . . . . . 6  |-  ( ps 
->  ( ( A  +  B ) ^ N
)  =  sum_ k  e.  ( 0 ... N
) ( ( N  _C  k )  x.  ( ( A ^
( N  -  k
) )  x.  ( B ^ k ) ) ) )
21adantl 275 . . . . 5  |-  ( (
ph  /\  ps )  ->  ( ( A  +  B ) ^ N
)  =  sum_ k  e.  ( 0 ... N
) ( ( N  _C  k )  x.  ( ( A ^
( N  -  k
) )  x.  ( B ^ k ) ) ) )
32oveq1d 5797 . . . 4  |-  ( (
ph  /\  ps )  ->  ( ( ( A  +  B ) ^ N )  x.  A
)  =  ( sum_ k  e.  ( 0 ... N ) ( ( N  _C  k
)  x.  ( ( A ^ ( N  -  k ) )  x.  ( B ^
k ) ) )  x.  A ) )
4 0zd 9090 . . . . . . . 8  |-  ( ph  ->  0  e.  ZZ )
5 binomlem.3 . . . . . . . . 9  |-  ( ph  ->  N  e.  NN0 )
65nn0zd 9195 . . . . . . . 8  |-  ( ph  ->  N  e.  ZZ )
74, 6fzfigd 10235 . . . . . . 7  |-  ( ph  ->  ( 0 ... N
)  e.  Fin )
8 binomlem.1 . . . . . . 7  |-  ( ph  ->  A  e.  CC )
9 fzelp1 9885 . . . . . . . . 9  |-  ( k  e.  ( 0 ... N )  ->  k  e.  ( 0 ... ( N  +  1 ) ) )
10 elfzelz 9837 . . . . . . . . . . 11  |-  ( k  e.  ( 0 ... ( N  +  1 ) )  ->  k  e.  ZZ )
11 bccl 10545 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  k  e.  ZZ )  ->  ( N  _C  k
)  e.  NN0 )
125, 10, 11syl2an 287 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  ( N  _C  k )  e. 
NN0 )
1312nn0cnd 9056 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  ( N  _C  k )  e.  CC )
149, 13sylan2 284 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  ( N  _C  k )  e.  CC )
15 fznn0sub 9868 . . . . . . . . . 10  |-  ( k  e.  ( 0 ... N )  ->  ( N  -  k )  e.  NN0 )
16 expcl 10342 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( N  -  k
)  e.  NN0 )  ->  ( A ^ ( N  -  k )
)  e.  CC )
178, 15, 16syl2an 287 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  ( A ^ ( N  -  k ) )  e.  CC )
18 binomlem.2 . . . . . . . . . . 11  |-  ( ph  ->  B  e.  CC )
19 elfznn0 9925 . . . . . . . . . . 11  |-  ( k  e.  ( 0 ... ( N  +  1 ) )  ->  k  e.  NN0 )
20 expcl 10342 . . . . . . . . . . 11  |-  ( ( B  e.  CC  /\  k  e.  NN0 )  -> 
( B ^ k
)  e.  CC )
2118, 19, 20syl2an 287 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  ( B ^ k )  e.  CC )
229, 21sylan2 284 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  ( B ^ k )  e.  CC )
2317, 22mulcld 7810 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( A ^ ( N  -  k )
)  x.  ( B ^ k ) )  e.  CC )
2414, 23mulcld 7810 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( N  _C  k
)  x.  ( ( A ^ ( N  -  k ) )  x.  ( B ^
k ) ) )  e.  CC )
257, 8, 24fsummulc1 11250 . . . . . 6  |-  ( ph  ->  ( sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( A ^ ( N  -  k )
)  x.  ( B ^ k ) ) )  x.  A )  =  sum_ k  e.  ( 0 ... N ) ( ( ( N  _C  k )  x.  ( ( A ^
( N  -  k
) )  x.  ( B ^ k ) ) )  x.  A ) )
268adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  A  e.  CC )
2714, 23, 26mulassd 7813 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( ( N  _C  k )  x.  (
( A ^ ( N  -  k )
)  x.  ( B ^ k ) ) )  x.  A )  =  ( ( N  _C  k )  x.  ( ( ( A ^ ( N  -  k ) )  x.  ( B ^ k
) )  x.  A
) ) )
285nn0cnd 9056 . . . . . . . . . . . . . . 15  |-  ( ph  ->  N  e.  CC )
2928adantr 274 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  N  e.  CC )
30 1cnd 7806 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  1  e.  CC )
31 elfzelz 9837 . . . . . . . . . . . . . . . 16  |-  ( k  e.  ( 0 ... N )  ->  k  e.  ZZ )
3231adantl 275 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  k  e.  ZZ )
3332zcnd 9198 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  k  e.  CC )
3429, 30, 33addsubd 8118 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( N  +  1 )  -  k )  =  ( ( N  -  k )  +  1 ) )
3534oveq2d 5798 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  ( A ^ ( ( N  +  1 )  -  k ) )  =  ( A ^ (
( N  -  k
)  +  1 ) ) )
36 expp1 10331 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  ( N  -  k
)  e.  NN0 )  ->  ( A ^ (
( N  -  k
)  +  1 ) )  =  ( ( A ^ ( N  -  k ) )  x.  A ) )
378, 15, 36syl2an 287 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  ( A ^ ( ( N  -  k )  +  1 ) )  =  ( ( A ^
( N  -  k
) )  x.  A
) )
3835, 37eqtrd 2173 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  ( A ^ ( ( N  +  1 )  -  k ) )  =  ( ( A ^
( N  -  k
) )  x.  A
) )
3938oveq1d 5797 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) )  =  ( ( ( A ^ ( N  -  k ) )  x.  A )  x.  ( B ^ k
) ) )
4017, 26, 22mul32d 7939 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( ( A ^
( N  -  k
) )  x.  A
)  x.  ( B ^ k ) )  =  ( ( ( A ^ ( N  -  k ) )  x.  ( B ^
k ) )  x.  A ) )
4139, 40eqtrd 2173 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) )  =  ( ( ( A ^ ( N  -  k ) )  x.  ( B ^
k ) )  x.  A ) )
4241oveq2d 5798 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( N  _C  k
)  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^
k ) ) )  =  ( ( N  _C  k )  x.  ( ( ( A ^ ( N  -  k ) )  x.  ( B ^ k
) )  x.  A
) ) )
4327, 42eqtr4d 2176 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( ( N  _C  k )  x.  (
( A ^ ( N  -  k )
)  x.  ( B ^ k ) ) )  x.  A )  =  ( ( N  _C  k )  x.  ( ( A ^
( ( N  + 
1 )  -  k
) )  x.  ( B ^ k ) ) ) )
4443sumeq2dv 11169 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  ( 0 ... N ) ( ( ( N  _C  k )  x.  ( ( A ^
( N  -  k
) )  x.  ( B ^ k ) ) )  x.  A )  =  sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) ) ) )
45 fzssp1 9878 . . . . . . . 8  |-  ( 0 ... N )  C_  ( 0 ... ( N  +  1 ) )
4645a1i 9 . . . . . . 7  |-  ( ph  ->  ( 0 ... N
)  C_  ( 0 ... ( N  + 
1 ) ) )
47 fznn0sub 9868 . . . . . . . . . . 11  |-  ( k  e.  ( 0 ... ( N  +  1 ) )  ->  (
( N  +  1 )  -  k )  e.  NN0 )
48 expcl 10342 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( ( N  + 
1 )  -  k
)  e.  NN0 )  ->  ( A ^ (
( N  +  1 )  -  k ) )  e.  CC )
498, 47, 48syl2an 287 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  ( A ^ ( ( N  +  1 )  -  k ) )  e.  CC )
5049, 21mulcld 7810 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) )  e.  CC )
5113, 50mulcld 7810 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  (
( N  _C  k
)  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^
k ) ) )  e.  CC )
529, 51sylan2 284 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( N  _C  k
)  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^
k ) ) )  e.  CC )
535adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
0 ... N ) ) )  ->  N  e.  NN0 )
54 eldifi 3203 . . . . . . . . . . . 12  |-  ( k  e.  ( ( 0 ... ( N  + 
1 ) )  \ 
( 0 ... N
) )  ->  k  e.  ( 0 ... ( N  +  1 ) ) )
5554, 10syl 14 . . . . . . . . . . 11  |-  ( k  e.  ( ( 0 ... ( N  + 
1 ) )  \ 
( 0 ... N
) )  ->  k  e.  ZZ )
5655adantl 275 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
0 ... N ) ) )  ->  k  e.  ZZ )
57 eldifn 3204 . . . . . . . . . . 11  |-  ( k  e.  ( ( 0 ... ( N  + 
1 ) )  \ 
( 0 ... N
) )  ->  -.  k  e.  ( 0 ... N ) )
5857adantl 275 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
0 ... N ) ) )  ->  -.  k  e.  ( 0 ... N
) )
59 bcval3 10529 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  k  e.  ZZ  /\  -.  k  e.  ( 0 ... N ) )  ->  ( N  _C  k )  =  0 )
6053, 56, 58, 59syl3anc 1217 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
0 ... N ) ) )  ->  ( N  _C  k )  =  0 )
6160oveq1d 5797 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
0 ... N ) ) )  ->  ( ( N  _C  k )  x.  ( ( A ^
( ( N  + 
1 )  -  k
) )  x.  ( B ^ k ) ) )  =  ( 0  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^ k
) ) ) )
6250mul02d 8178 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  (
0  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^
k ) ) )  =  0 )
6354, 62sylan2 284 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
0 ... N ) ) )  ->  ( 0  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^ k
) ) )  =  0 )
6461, 63eqtrd 2173 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
0 ... N ) ) )  ->  ( ( N  _C  k )  x.  ( ( A ^
( ( N  + 
1 )  -  k
) )  x.  ( B ^ k ) ) )  =  0 )
65 eluzelz 9359 . . . . . . . . . 10  |-  ( n  e.  ( ZZ>= `  0
)  ->  n  e.  ZZ )
6665adantl 275 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( ZZ>= `  0 )
)  ->  n  e.  ZZ )
67 0zd 9090 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( ZZ>= `  0 )
)  ->  0  e.  ZZ )
686adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( ZZ>= `  0 )
)  ->  N  e.  ZZ )
69 fzdcel 9851 . . . . . . . . 9  |-  ( ( n  e.  ZZ  /\  0  e.  ZZ  /\  N  e.  ZZ )  -> DECID  n  e.  (
0 ... N ) )
7066, 67, 68, 69syl3anc 1217 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ZZ>= `  0 )
)  -> DECID  n  e.  (
0 ... N ) )
7170ralrimiva 2508 . . . . . . 7  |-  ( ph  ->  A. n  e.  (
ZZ>= `  0 )DECID  n  e.  ( 0 ... N
) )
72 fzssuz 9876 . . . . . . . 8  |-  ( 0 ... ( N  + 
1 ) )  C_  ( ZZ>= `  0 )
7372a1i 9 . . . . . . 7  |-  ( ph  ->  ( 0 ... ( N  +  1 ) )  C_  ( ZZ>= ` 
0 ) )
7468peano2zd 9200 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( ZZ>= `  0 )
)  ->  ( N  +  1 )  e.  ZZ )
75 fzdcel 9851 . . . . . . . . 9  |-  ( ( n  e.  ZZ  /\  0  e.  ZZ  /\  ( N  +  1 )  e.  ZZ )  -> DECID  n  e.  ( 0 ... ( N  +  1 ) ) )
7666, 67, 74, 75syl3anc 1217 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ZZ>= `  0 )
)  -> DECID  n  e.  (
0 ... ( N  + 
1 ) ) )
7776ralrimiva 2508 . . . . . . 7  |-  ( ph  ->  A. n  e.  (
ZZ>= `  0 )DECID  n  e.  ( 0 ... ( N  +  1 ) ) )
7846, 52, 64, 71, 4, 73, 77isumss 11192 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) ) )  =  sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( N  _C  k )  x.  ( ( A ^
( ( N  + 
1 )  -  k
) )  x.  ( B ^ k ) ) ) )
7925, 44, 783eqtrd 2177 . . . . 5  |-  ( ph  ->  ( sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( A ^ ( N  -  k )
)  x.  ( B ^ k ) ) )  x.  A )  =  sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( N  _C  k )  x.  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) ) ) )
8079adantr 274 . . . 4  |-  ( (
ph  /\  ps )  ->  ( sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( A ^ ( N  -  k )
)  x.  ( B ^ k ) ) )  x.  A )  =  sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( N  _C  k )  x.  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) ) ) )
813, 80eqtrd 2173 . . 3  |-  ( (
ph  /\  ps )  ->  ( ( ( A  +  B ) ^ N )  x.  A
)  =  sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( N  _C  k )  x.  ( ( A ^
( ( N  + 
1 )  -  k
) )  x.  ( B ^ k ) ) ) )
821oveq1d 5797 . . . 4  |-  ( ps 
->  ( ( ( A  +  B ) ^ N )  x.  B
)  =  ( sum_ k  e.  ( 0 ... N ) ( ( N  _C  k
)  x.  ( ( A ^ ( N  -  k ) )  x.  ( B ^
k ) ) )  x.  B ) )
837, 18, 24fsummulc1 11250 . . . . 5  |-  ( ph  ->  ( sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( A ^ ( N  -  k )
)  x.  ( B ^ k ) ) )  x.  B )  =  sum_ k  e.  ( 0 ... N ) ( ( ( N  _C  k )  x.  ( ( A ^
( N  -  k
) )  x.  ( B ^ k ) ) )  x.  B ) )
84 1zzd 9105 . . . . . . . 8  |-  ( ph  ->  1  e.  ZZ )
8518adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  B  e.  CC )
8624, 85mulcld 7810 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( ( N  _C  k )  x.  (
( A ^ ( N  -  k )
)  x.  ( B ^ k ) ) )  x.  B )  e.  CC )
87 oveq2 5790 . . . . . . . . . 10  |-  ( k  =  ( j  - 
1 )  ->  ( N  _C  k )  =  ( N  _C  (
j  -  1 ) ) )
88 oveq2 5790 . . . . . . . . . . . 12  |-  ( k  =  ( j  - 
1 )  ->  ( N  -  k )  =  ( N  -  ( j  -  1 ) ) )
8988oveq2d 5798 . . . . . . . . . . 11  |-  ( k  =  ( j  - 
1 )  ->  ( A ^ ( N  -  k ) )  =  ( A ^ ( N  -  ( j  -  1 ) ) ) )
90 oveq2 5790 . . . . . . . . . . 11  |-  ( k  =  ( j  - 
1 )  ->  ( B ^ k )  =  ( B ^ (
j  -  1 ) ) )
9189, 90oveq12d 5800 . . . . . . . . . 10  |-  ( k  =  ( j  - 
1 )  ->  (
( A ^ ( N  -  k )
)  x.  ( B ^ k ) )  =  ( ( A ^ ( N  -  ( j  -  1 ) ) )  x.  ( B ^ (
j  -  1 ) ) ) )
9287, 91oveq12d 5800 . . . . . . . . 9  |-  ( k  =  ( j  - 
1 )  ->  (
( N  _C  k
)  x.  ( ( A ^ ( N  -  k ) )  x.  ( B ^
k ) ) )  =  ( ( N  _C  ( j  - 
1 ) )  x.  ( ( A ^
( N  -  (
j  -  1 ) ) )  x.  ( B ^ ( j  - 
1 ) ) ) ) )
9392oveq1d 5797 . . . . . . . 8  |-  ( k  =  ( j  - 
1 )  ->  (
( ( N  _C  k )  x.  (
( A ^ ( N  -  k )
)  x.  ( B ^ k ) ) )  x.  B )  =  ( ( ( N  _C  ( j  -  1 ) )  x.  ( ( A ^ ( N  -  ( j  -  1 ) ) )  x.  ( B ^ (
j  -  1 ) ) ) )  x.  B ) )
9484, 4, 6, 86, 93fsumshft 11245 . . . . . . 7  |-  ( ph  -> 
sum_ k  e.  ( 0 ... N ) ( ( ( N  _C  k )  x.  ( ( A ^
( N  -  k
) )  x.  ( B ^ k ) ) )  x.  B )  =  sum_ j  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) ( ( ( N  _C  ( j  - 
1 ) )  x.  ( ( A ^
( N  -  (
j  -  1 ) ) )  x.  ( B ^ ( j  - 
1 ) ) ) )  x.  B ) )
95 oveq1 5789 . . . . . . . . . . 11  |-  ( j  =  k  ->  (
j  -  1 )  =  ( k  - 
1 ) )
9695oveq2d 5798 . . . . . . . . . 10  |-  ( j  =  k  ->  ( N  _C  ( j  - 
1 ) )  =  ( N  _C  (
k  -  1 ) ) )
9795oveq2d 5798 . . . . . . . . . . . 12  |-  ( j  =  k  ->  ( N  -  ( j  -  1 ) )  =  ( N  -  ( k  -  1 ) ) )
9897oveq2d 5798 . . . . . . . . . . 11  |-  ( j  =  k  ->  ( A ^ ( N  -  ( j  -  1 ) ) )  =  ( A ^ ( N  -  ( k  -  1 ) ) ) )
9995oveq2d 5798 . . . . . . . . . . 11  |-  ( j  =  k  ->  ( B ^ ( j  - 
1 ) )  =  ( B ^ (
k  -  1 ) ) )
10098, 99oveq12d 5800 . . . . . . . . . 10  |-  ( j  =  k  ->  (
( A ^ ( N  -  ( j  -  1 ) ) )  x.  ( B ^ ( j  - 
1 ) ) )  =  ( ( A ^ ( N  -  ( k  -  1 ) ) )  x.  ( B ^ (
k  -  1 ) ) ) )
10196, 100oveq12d 5800 . . . . . . . . 9  |-  ( j  =  k  ->  (
( N  _C  (
j  -  1 ) )  x.  ( ( A ^ ( N  -  ( j  - 
1 ) ) )  x.  ( B ^
( j  -  1 ) ) ) )  =  ( ( N  _C  ( k  - 
1 ) )  x.  ( ( A ^
( N  -  (
k  -  1 ) ) )  x.  ( B ^ ( k  - 
1 ) ) ) ) )
102101oveq1d 5797 . . . . . . . 8  |-  ( j  =  k  ->  (
( ( N  _C  ( j  -  1 ) )  x.  (
( A ^ ( N  -  ( j  -  1 ) ) )  x.  ( B ^ ( j  - 
1 ) ) ) )  x.  B )  =  ( ( ( N  _C  ( k  -  1 ) )  x.  ( ( A ^ ( N  -  ( k  -  1 ) ) )  x.  ( B ^ (
k  -  1 ) ) ) )  x.  B ) )
103102cbvsumv 11162 . . . . . . 7  |-  sum_ j  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) ( ( ( N  _C  ( j  -  1 ) )  x.  ( ( A ^ ( N  -  ( j  -  1 ) ) )  x.  ( B ^ (
j  -  1 ) ) ) )  x.  B )  =  sum_ k  e.  ( (
0  +  1 ) ... ( N  + 
1 ) ) ( ( ( N  _C  ( k  -  1 ) )  x.  (
( A ^ ( N  -  ( k  -  1 ) ) )  x.  ( B ^ ( k  - 
1 ) ) ) )  x.  B )
10494, 103eqtrdi 2189 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  ( 0 ... N ) ( ( ( N  _C  k )  x.  ( ( A ^
( N  -  k
) )  x.  ( B ^ k ) ) )  x.  B )  =  sum_ k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) ( ( ( N  _C  ( k  - 
1 ) )  x.  ( ( A ^
( N  -  (
k  -  1 ) ) )  x.  ( B ^ ( k  - 
1 ) ) ) )  x.  B ) )
10528adantr 274 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  N  e.  CC )
106 elfzelz 9837 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) )  ->  k  e.  ZZ )
107106adantl 275 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  k  e.  ZZ )
108107zcnd 9198 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  k  e.  CC )
109 1cnd 7806 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  1  e.  CC )
110105, 108, 109subsub3d 8127 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  ( N  -  ( k  -  1 ) )  =  ( ( N  +  1 )  -  k ) )
111110oveq2d 5798 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  ( A ^ ( N  -  ( k  -  1 ) ) )  =  ( A ^ (
( N  +  1 )  -  k ) ) )
112111oveq1d 5797 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  (
( A ^ ( N  -  ( k  -  1 ) ) )  x.  ( B ^ ( k  - 
1 ) ) )  =  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^ (
k  -  1 ) ) ) )
113112oveq2d 5798 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  (
( N  _C  (
k  -  1 ) )  x.  ( ( A ^ ( N  -  ( k  - 
1 ) ) )  x.  ( B ^
( k  -  1 ) ) ) )  =  ( ( N  _C  ( k  - 
1 ) )  x.  ( ( A ^
( ( N  + 
1 )  -  k
) )  x.  ( B ^ ( k  - 
1 ) ) ) ) )
114113oveq1d 5797 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  (
( ( N  _C  ( k  -  1 ) )  x.  (
( A ^ ( N  -  ( k  -  1 ) ) )  x.  ( B ^ ( k  - 
1 ) ) ) )  x.  B )  =  ( ( ( N  _C  ( k  -  1 ) )  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^ (
k  -  1 ) ) ) )  x.  B ) )
115 0z 9089 . . . . . . . . . . . 12  |-  0  e.  ZZ
116 fzp1ss 9884 . . . . . . . . . . . 12  |-  ( 0  e.  ZZ  ->  (
( 0  +  1 ) ... ( N  +  1 ) ) 
C_  ( 0 ... ( N  +  1 ) ) )
117115, 116ax-mp 5 . . . . . . . . . . 11  |-  ( ( 0  +  1 ) ... ( N  + 
1 ) )  C_  ( 0 ... ( N  +  1 ) )
118117sseli 3098 . . . . . . . . . 10  |-  ( k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) )  ->  k  e.  ( 0 ... ( N  +  1 ) ) )
11910adantl 275 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  k  e.  ZZ )
120 peano2zm 9116 . . . . . . . . . . . . 13  |-  ( k  e.  ZZ  ->  (
k  -  1 )  e.  ZZ )
121119, 120syl 14 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  (
k  -  1 )  e.  ZZ )
122 bccl 10545 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  ( k  -  1 )  e.  ZZ )  ->  ( N  _C  ( k  -  1 ) )  e.  NN0 )
1235, 121, 122syl2an2r 585 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  ( N  _C  ( k  - 
1 ) )  e. 
NN0 )
124123nn0cnd 9056 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  ( N  _C  ( k  - 
1 ) )  e.  CC )
125118, 124sylan2 284 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  ( N  _C  ( k  - 
1 ) )  e.  CC )
126118, 49sylan2 284 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  ( A ^ ( ( N  +  1 )  -  k ) )  e.  CC )
12718adantr 274 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  B  e.  CC )
128 elfznn 9865 . . . . . . . . . . . . . 14  |-  ( k  e.  ( 1 ... ( N  +  1 ) )  ->  k  e.  NN )
129 0p1e1 8858 . . . . . . . . . . . . . . 15  |-  ( 0  +  1 )  =  1
130129oveq1i 5792 . . . . . . . . . . . . . 14  |-  ( ( 0  +  1 ) ... ( N  + 
1 ) )  =  ( 1 ... ( N  +  1 ) )
131128, 130eleq2s 2235 . . . . . . . . . . . . 13  |-  ( k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) )  ->  k  e.  NN )
132131adantl 275 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  k  e.  NN )
133 nnm1nn0 9042 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  (
k  -  1 )  e.  NN0 )
134132, 133syl 14 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  (
k  -  1 )  e.  NN0 )
135127, 134expcld 10455 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  ( B ^ ( k  - 
1 ) )  e.  CC )
136126, 135mulcld 7810 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ ( k  - 
1 ) ) )  e.  CC )
137125, 136, 127mulassd 7813 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  (
( ( N  _C  ( k  -  1 ) )  x.  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ ( k  - 
1 ) ) ) )  x.  B )  =  ( ( N  _C  ( k  - 
1 ) )  x.  ( ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^ (
k  -  1 ) ) )  x.  B
) ) )
138126, 135, 127mulassd 7813 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  (
( ( A ^
( ( N  + 
1 )  -  k
) )  x.  ( B ^ ( k  - 
1 ) ) )  x.  B )  =  ( ( A ^
( ( N  + 
1 )  -  k
) )  x.  (
( B ^ (
k  -  1 ) )  x.  B ) ) )
139 expm1t 10352 . . . . . . . . . . . 12  |-  ( ( B  e.  CC  /\  k  e.  NN )  ->  ( B ^ k
)  =  ( ( B ^ ( k  -  1 ) )  x.  B ) )
14018, 131, 139syl2an 287 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  ( B ^ k )  =  ( ( B ^
( k  -  1 ) )  x.  B
) )
141140oveq2d 5798 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) )  =  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( ( B ^
( k  -  1 ) )  x.  B
) ) )
142138, 141eqtr4d 2176 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  (
( ( A ^
( ( N  + 
1 )  -  k
) )  x.  ( B ^ ( k  - 
1 ) ) )  x.  B )  =  ( ( A ^
( ( N  + 
1 )  -  k
) )  x.  ( B ^ k ) ) )
143142oveq2d 5798 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  (
( N  _C  (
k  -  1 ) )  x.  ( ( ( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ ( k  - 
1 ) ) )  x.  B ) )  =  ( ( N  _C  ( k  - 
1 ) )  x.  ( ( A ^
( ( N  + 
1 )  -  k
) )  x.  ( B ^ k ) ) ) )
144114, 137, 1433eqtrd 2177 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  (
( ( N  _C  ( k  -  1 ) )  x.  (
( A ^ ( N  -  ( k  -  1 ) ) )  x.  ( B ^ ( k  - 
1 ) ) ) )  x.  B )  =  ( ( N  _C  ( k  - 
1 ) )  x.  ( ( A ^
( ( N  + 
1 )  -  k
) )  x.  ( B ^ k ) ) ) )
145144sumeq2dv 11169 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) ( ( ( N  _C  ( k  - 
1 ) )  x.  ( ( A ^
( N  -  (
k  -  1 ) ) )  x.  ( B ^ ( k  - 
1 ) ) ) )  x.  B )  =  sum_ k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) ( ( N  _C  ( k  -  1 ) )  x.  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) ) ) )
146117a1i 9 . . . . . . 7  |-  ( ph  ->  ( ( 0  +  1 ) ... ( N  +  1 ) )  C_  ( 0 ... ( N  + 
1 ) ) )
147124, 50mulcld 7810 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  (
( N  _C  (
k  -  1 ) )  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^
k ) ) )  e.  CC )
148118, 147sylan2 284 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  (
( N  _C  (
k  -  1 ) )  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^
k ) ) )  e.  CC )
1495adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
( 0  +  1 ) ... ( N  +  1 ) ) ) )  ->  N  e.  NN0 )
150 eldifi 3203 . . . . . . . . . . . . 13  |-  ( k  e.  ( ( 0 ... ( N  + 
1 ) )  \ 
( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  k  e.  ( 0 ... ( N  +  1 ) ) )
151150adantl 275 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
( 0  +  1 ) ... ( N  +  1 ) ) ) )  ->  k  e.  ( 0 ... ( N  +  1 ) ) )
152151, 10syl 14 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
( 0  +  1 ) ... ( N  +  1 ) ) ) )  ->  k  e.  ZZ )
153152, 120syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
( 0  +  1 ) ... ( N  +  1 ) ) ) )  ->  (
k  -  1 )  e.  ZZ )
154 eldifn 3204 . . . . . . . . . . . 12  |-  ( k  e.  ( ( 0 ... ( N  + 
1 ) )  \ 
( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  -.  k  e.  ( (
0  +  1 ) ... ( N  + 
1 ) ) )
155154adantl 275 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
( 0  +  1 ) ... ( N  +  1 ) ) ) )  ->  -.  k  e.  ( (
0  +  1 ) ... ( N  + 
1 ) ) )
156 0zd 9090 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
( 0  +  1 ) ... ( N  +  1 ) ) ) )  ->  0  e.  ZZ )
157149nn0zd 9195 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
( 0  +  1 ) ... ( N  +  1 ) ) ) )  ->  N  e.  ZZ )
158 1zzd 9105 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
( 0  +  1 ) ... ( N  +  1 ) ) ) )  ->  1  e.  ZZ )
159 fzaddel 9870 . . . . . . . . . . . . 13  |-  ( ( ( 0  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( k  -  1 )  e.  ZZ  /\  1  e.  ZZ ) )  -> 
( ( k  - 
1 )  e.  ( 0 ... N )  <-> 
( ( k  - 
1 )  +  1 )  e.  ( ( 0  +  1 ) ... ( N  + 
1 ) ) ) )
160156, 157, 153, 158, 159syl22anc 1218 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
( 0  +  1 ) ... ( N  +  1 ) ) ) )  ->  (
( k  -  1 )  e.  ( 0 ... N )  <->  ( (
k  -  1 )  +  1 )  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) ) )
161152zcnd 9198 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
( 0  +  1 ) ... ( N  +  1 ) ) ) )  ->  k  e.  CC )
162 ax-1cn 7737 . . . . . . . . . . . . . 14  |-  1  e.  CC
163 npcan 7995 . . . . . . . . . . . . . 14  |-  ( ( k  e.  CC  /\  1  e.  CC )  ->  ( ( k  - 
1 )  +  1 )  =  k )
164161, 162, 163sylancl 410 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
( 0  +  1 ) ... ( N  +  1 ) ) ) )  ->  (
( k  -  1 )  +  1 )  =  k )
165164eleq1d 2209 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
( 0  +  1 ) ... ( N  +  1 ) ) ) )  ->  (
( ( k  - 
1 )  +  1 )  e.  ( ( 0  +  1 ) ... ( N  + 
1 ) )  <->  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) ) )
166160, 165bitrd 187 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
( 0  +  1 ) ... ( N  +  1 ) ) ) )  ->  (
( k  -  1 )  e.  ( 0 ... N )  <->  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) ) )
167155, 166mtbird 663 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
( 0  +  1 ) ... ( N  +  1 ) ) ) )  ->  -.  ( k  -  1 )  e.  ( 0 ... N ) )
168 bcval3 10529 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  ( k  -  1 )  e.  ZZ  /\  -.  ( k  -  1 )  e.  ( 0 ... N ) )  ->  ( N  _C  ( k  -  1 ) )  =  0 )
169149, 153, 167, 168syl3anc 1217 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
( 0  +  1 ) ... ( N  +  1 ) ) ) )  ->  ( N  _C  ( k  - 
1 ) )  =  0 )
170169oveq1d 5797 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
( 0  +  1 ) ... ( N  +  1 ) ) ) )  ->  (
( N  _C  (
k  -  1 ) )  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^
k ) ) )  =  ( 0  x.  ( ( A ^
( ( N  + 
1 )  -  k
) )  x.  ( B ^ k ) ) ) )
171150, 62sylan2 284 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
( 0  +  1 ) ... ( N  +  1 ) ) ) )  ->  (
0  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^
k ) ) )  =  0 )
172170, 171eqtrd 2173 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
( 0  +  1 ) ... ( N  +  1 ) ) ) )  ->  (
( N  _C  (
k  -  1 ) )  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^
k ) ) )  =  0 )
17367peano2zd 9200 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( ZZ>= `  0 )
)  ->  ( 0  +  1 )  e.  ZZ )
174 fzdcel 9851 . . . . . . . . 9  |-  ( ( n  e.  ZZ  /\  ( 0  +  1 )  e.  ZZ  /\  ( N  +  1
)  e.  ZZ )  -> DECID 
n  e.  ( ( 0  +  1 ) ... ( N  + 
1 ) ) )
17566, 173, 74, 174syl3anc 1217 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ZZ>= `  0 )
)  -> DECID  n  e.  (
( 0  +  1 ) ... ( N  +  1 ) ) )
176175ralrimiva 2508 . . . . . . 7  |-  ( ph  ->  A. n  e.  (
ZZ>= `  0 )DECID  n  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )
177146, 148, 172, 176, 4, 73, 77isumss 11192 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) ( ( N  _C  ( k  -  1 ) )  x.  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) ) )  =  sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( N  _C  ( k  - 
1 ) )  x.  ( ( A ^
( ( N  + 
1 )  -  k
) )  x.  ( B ^ k ) ) ) )
178104, 145, 1773eqtrd 2177 . . . . 5  |-  ( ph  -> 
sum_ k  e.  ( 0 ... N ) ( ( ( N  _C  k )  x.  ( ( A ^
( N  -  k
) )  x.  ( B ^ k ) ) )  x.  B )  =  sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( N  _C  ( k  -  1 ) )  x.  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) ) ) )
17983, 178eqtrd 2173 . . . 4  |-  ( ph  ->  ( sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( A ^ ( N  -  k )
)  x.  ( B ^ k ) ) )  x.  B )  =  sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( N  _C  ( k  -  1 ) )  x.  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) ) ) )
18082, 179sylan9eqr 2195 . . 3  |-  ( (
ph  /\  ps )  ->  ( ( ( A  +  B ) ^ N )  x.  B
)  =  sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( N  _C  ( k  - 
1 ) )  x.  ( ( A ^
( ( N  + 
1 )  -  k
) )  x.  ( B ^ k ) ) ) )
18181, 180oveq12d 5800 . 2  |-  ( (
ph  /\  ps )  ->  ( ( ( ( A  +  B ) ^ N )  x.  A )  +  ( ( ( A  +  B ) ^ N
)  x.  B ) )  =  ( sum_ k  e.  ( 0 ... ( N  + 
1 ) ) ( ( N  _C  k
)  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^
k ) ) )  +  sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( N  _C  ( k  -  1 ) )  x.  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) ) ) ) )
1828, 18addcld 7809 . . . . 5  |-  ( ph  ->  ( A  +  B
)  e.  CC )
183182, 5expp1d 10456 . . . 4  |-  ( ph  ->  ( ( A  +  B ) ^ ( N  +  1 ) )  =  ( ( ( A  +  B
) ^ N )  x.  ( A  +  B ) ) )
184182, 5expcld 10455 . . . . 5  |-  ( ph  ->  ( ( A  +  B ) ^ N
)  e.  CC )
185184, 8, 18adddid 7814 . . . 4  |-  ( ph  ->  ( ( ( A  +  B ) ^ N )  x.  ( A  +  B )
)  =  ( ( ( ( A  +  B ) ^ N
)  x.  A )  +  ( ( ( A  +  B ) ^ N )  x.  B ) ) )
186183, 185eqtrd 2173 . . 3  |-  ( ph  ->  ( ( A  +  B ) ^ ( N  +  1 ) )  =  ( ( ( ( A  +  B ) ^ N
)  x.  A )  +  ( ( ( A  +  B ) ^ N )  x.  B ) ) )
187186adantr 274 . 2  |-  ( (
ph  /\  ps )  ->  ( ( A  +  B ) ^ ( N  +  1 ) )  =  ( ( ( ( A  +  B ) ^ N
)  x.  A )  +  ( ( ( A  +  B ) ^ N )  x.  B ) ) )
188 bcpasc 10544 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  k  e.  ZZ )  ->  ( ( N  _C  k )  +  ( N  _C  ( k  -  1 ) ) )  =  ( ( N  +  1 )  _C  k ) )
1895, 10, 188syl2an 287 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  (
( N  _C  k
)  +  ( N  _C  ( k  - 
1 ) ) )  =  ( ( N  +  1 )  _C  k ) )
190189oveq1d 5797 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  (
( ( N  _C  k )  +  ( N  _C  ( k  -  1 ) ) )  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^
k ) ) )  =  ( ( ( N  +  1 )  _C  k )  x.  ( ( A ^
( ( N  + 
1 )  -  k
) )  x.  ( B ^ k ) ) ) )
19113, 124, 50adddird 7815 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  (
( ( N  _C  k )  +  ( N  _C  ( k  -  1 ) ) )  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^
k ) ) )  =  ( ( ( N  _C  k )  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^ k
) ) )  +  ( ( N  _C  ( k  -  1 ) )  x.  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) ) ) ) )
192190, 191eqtr3d 2175 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  (
( ( N  + 
1 )  _C  k
)  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^
k ) ) )  =  ( ( ( N  _C  k )  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^ k
) ) )  +  ( ( N  _C  ( k  -  1 ) )  x.  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) ) ) ) )
193192sumeq2dv 11169 . . . 4  |-  ( ph  -> 
sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( ( N  +  1 )  _C  k )  x.  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) ) )  =  sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( ( N  _C  k )  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^ k
) ) )  +  ( ( N  _C  ( k  -  1 ) )  x.  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) ) ) ) )
1946peano2zd 9200 . . . . . 6  |-  ( ph  ->  ( N  +  1 )  e.  ZZ )
1954, 194fzfigd 10235 . . . . 5  |-  ( ph  ->  ( 0 ... ( N  +  1 ) )  e.  Fin )
196195, 51, 147fsumadd 11207 . . . 4  |-  ( ph  -> 
sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( ( N  _C  k )  x.  ( ( A ^
( ( N  + 
1 )  -  k
) )  x.  ( B ^ k ) ) )  +  ( ( N  _C  ( k  -  1 ) )  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^ k
) ) ) )  =  ( sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( N  _C  k )  x.  ( ( A ^
( ( N  + 
1 )  -  k
) )  x.  ( B ^ k ) ) )  +  sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( N  _C  ( k  - 
1 ) )  x.  ( ( A ^
( ( N  + 
1 )  -  k
) )  x.  ( B ^ k ) ) ) ) )
197193, 196eqtrd 2173 . . 3  |-  ( ph  -> 
sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( ( N  +  1 )  _C  k )  x.  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) ) )  =  ( sum_ k  e.  ( 0 ... ( N  + 
1 ) ) ( ( N  _C  k
)  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^
k ) ) )  +  sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( N  _C  ( k  -  1 ) )  x.  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) ) ) ) )
198197adantr 274 . 2  |-  ( (
ph  /\  ps )  -> 
sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( ( N  +  1 )  _C  k )  x.  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) ) )  =  ( sum_ k  e.  ( 0 ... ( N  + 
1 ) ) ( ( N  _C  k
)  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^
k ) ) )  +  sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( N  _C  ( k  -  1 ) )  x.  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) ) ) ) )
199181, 187, 1983eqtr4d 2183 1  |-  ( (
ph  /\  ps )  ->  ( ( A  +  B ) ^ ( N  +  1 ) )  =  sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( ( N  +  1 )  _C  k )  x.  ( ( A ^
( ( N  + 
1 )  -  k
) )  x.  ( B ^ k ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104  DECID wdc 820    = wceq 1332    e. wcel 1481    \ cdif 3073    C_ wss 3076   ` cfv 5131  (class class class)co 5782   CCcc 7642   0cc0 7644   1c1 7645    + caddc 7647    x. cmul 7649    - cmin 7957   NNcn 8744   NN0cn0 9001   ZZcz 9078   ZZ>=cuz 9350   ...cfz 9821   ^cexp 10323    _C cbc 10525   sum_csu 11154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-frec 6296  df-1o 6321  df-oadd 6325  df-er 6437  df-en 6643  df-dom 6644  df-fin 6645  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-fz 9822  df-fzo 9951  df-seqfrec 10250  df-exp 10324  df-fac 10504  df-bc 10526  df-ihash 10554  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-clim 11080  df-sumdc 11155
This theorem is referenced by:  binom  11285
  Copyright terms: Public domain W3C validator