ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  binomlem Unicode version

Theorem binomlem 11357
Description: Lemma for binom 11358 (binomial theorem). Inductive step. (Contributed by NM, 6-Dec-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
binomlem.1  |-  ( ph  ->  A  e.  CC )
binomlem.2  |-  ( ph  ->  B  e.  CC )
binomlem.3  |-  ( ph  ->  N  e.  NN0 )
binomlem.4  |-  ( ps 
->  ( ( A  +  B ) ^ N
)  =  sum_ k  e.  ( 0 ... N
) ( ( N  _C  k )  x.  ( ( A ^
( N  -  k
) )  x.  ( B ^ k ) ) ) )
Assertion
Ref Expression
binomlem  |-  ( (
ph  /\  ps )  ->  ( ( A  +  B ) ^ ( N  +  1 ) )  =  sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( ( N  +  1 )  _C  k )  x.  ( ( A ^
( ( N  + 
1 )  -  k
) )  x.  ( B ^ k ) ) ) )
Distinct variable groups:    A, k    B, k    k, N    ph, k
Allowed substitution hint:    ps( k)

Proof of Theorem binomlem
Dummy variables  j  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 binomlem.4 . . . . . 6  |-  ( ps 
->  ( ( A  +  B ) ^ N
)  =  sum_ k  e.  ( 0 ... N
) ( ( N  _C  k )  x.  ( ( A ^
( N  -  k
) )  x.  ( B ^ k ) ) ) )
21adantl 275 . . . . 5  |-  ( (
ph  /\  ps )  ->  ( ( A  +  B ) ^ N
)  =  sum_ k  e.  ( 0 ... N
) ( ( N  _C  k )  x.  ( ( A ^
( N  -  k
) )  x.  ( B ^ k ) ) ) )
32oveq1d 5829 . . . 4  |-  ( (
ph  /\  ps )  ->  ( ( ( A  +  B ) ^ N )  x.  A
)  =  ( sum_ k  e.  ( 0 ... N ) ( ( N  _C  k
)  x.  ( ( A ^ ( N  -  k ) )  x.  ( B ^
k ) ) )  x.  A ) )
4 0zd 9158 . . . . . . . 8  |-  ( ph  ->  0  e.  ZZ )
5 binomlem.3 . . . . . . . . 9  |-  ( ph  ->  N  e.  NN0 )
65nn0zd 9263 . . . . . . . 8  |-  ( ph  ->  N  e.  ZZ )
74, 6fzfigd 10308 . . . . . . 7  |-  ( ph  ->  ( 0 ... N
)  e.  Fin )
8 binomlem.1 . . . . . . 7  |-  ( ph  ->  A  e.  CC )
9 fzelp1 9954 . . . . . . . . 9  |-  ( k  e.  ( 0 ... N )  ->  k  e.  ( 0 ... ( N  +  1 ) ) )
10 elfzelz 9906 . . . . . . . . . . 11  |-  ( k  e.  ( 0 ... ( N  +  1 ) )  ->  k  e.  ZZ )
11 bccl 10618 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  k  e.  ZZ )  ->  ( N  _C  k
)  e.  NN0 )
125, 10, 11syl2an 287 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  ( N  _C  k )  e. 
NN0 )
1312nn0cnd 9124 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  ( N  _C  k )  e.  CC )
149, 13sylan2 284 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  ( N  _C  k )  e.  CC )
15 fznn0sub 9937 . . . . . . . . . 10  |-  ( k  e.  ( 0 ... N )  ->  ( N  -  k )  e.  NN0 )
16 expcl 10415 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( N  -  k
)  e.  NN0 )  ->  ( A ^ ( N  -  k )
)  e.  CC )
178, 15, 16syl2an 287 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  ( A ^ ( N  -  k ) )  e.  CC )
18 binomlem.2 . . . . . . . . . . 11  |-  ( ph  ->  B  e.  CC )
19 elfznn0 9994 . . . . . . . . . . 11  |-  ( k  e.  ( 0 ... ( N  +  1 ) )  ->  k  e.  NN0 )
20 expcl 10415 . . . . . . . . . . 11  |-  ( ( B  e.  CC  /\  k  e.  NN0 )  -> 
( B ^ k
)  e.  CC )
2118, 19, 20syl2an 287 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  ( B ^ k )  e.  CC )
229, 21sylan2 284 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  ( B ^ k )  e.  CC )
2317, 22mulcld 7877 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( A ^ ( N  -  k )
)  x.  ( B ^ k ) )  e.  CC )
2414, 23mulcld 7877 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( N  _C  k
)  x.  ( ( A ^ ( N  -  k ) )  x.  ( B ^
k ) ) )  e.  CC )
257, 8, 24fsummulc1 11323 . . . . . 6  |-  ( ph  ->  ( sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( A ^ ( N  -  k )
)  x.  ( B ^ k ) ) )  x.  A )  =  sum_ k  e.  ( 0 ... N ) ( ( ( N  _C  k )  x.  ( ( A ^
( N  -  k
) )  x.  ( B ^ k ) ) )  x.  A ) )
268adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  A  e.  CC )
2714, 23, 26mulassd 7880 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( ( N  _C  k )  x.  (
( A ^ ( N  -  k )
)  x.  ( B ^ k ) ) )  x.  A )  =  ( ( N  _C  k )  x.  ( ( ( A ^ ( N  -  k ) )  x.  ( B ^ k
) )  x.  A
) ) )
285nn0cnd 9124 . . . . . . . . . . . . . . 15  |-  ( ph  ->  N  e.  CC )
2928adantr 274 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  N  e.  CC )
30 1cnd 7873 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  1  e.  CC )
31 elfzelz 9906 . . . . . . . . . . . . . . . 16  |-  ( k  e.  ( 0 ... N )  ->  k  e.  ZZ )
3231adantl 275 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  k  e.  ZZ )
3332zcnd 9266 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  k  e.  CC )
3429, 30, 33addsubd 8186 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( N  +  1 )  -  k )  =  ( ( N  -  k )  +  1 ) )
3534oveq2d 5830 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  ( A ^ ( ( N  +  1 )  -  k ) )  =  ( A ^ (
( N  -  k
)  +  1 ) ) )
36 expp1 10404 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  ( N  -  k
)  e.  NN0 )  ->  ( A ^ (
( N  -  k
)  +  1 ) )  =  ( ( A ^ ( N  -  k ) )  x.  A ) )
378, 15, 36syl2an 287 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  ( A ^ ( ( N  -  k )  +  1 ) )  =  ( ( A ^
( N  -  k
) )  x.  A
) )
3835, 37eqtrd 2187 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  ( A ^ ( ( N  +  1 )  -  k ) )  =  ( ( A ^
( N  -  k
) )  x.  A
) )
3938oveq1d 5829 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) )  =  ( ( ( A ^ ( N  -  k ) )  x.  A )  x.  ( B ^ k
) ) )
4017, 26, 22mul32d 8007 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( ( A ^
( N  -  k
) )  x.  A
)  x.  ( B ^ k ) )  =  ( ( ( A ^ ( N  -  k ) )  x.  ( B ^
k ) )  x.  A ) )
4139, 40eqtrd 2187 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) )  =  ( ( ( A ^ ( N  -  k ) )  x.  ( B ^
k ) )  x.  A ) )
4241oveq2d 5830 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( N  _C  k
)  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^
k ) ) )  =  ( ( N  _C  k )  x.  ( ( ( A ^ ( N  -  k ) )  x.  ( B ^ k
) )  x.  A
) ) )
4327, 42eqtr4d 2190 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( ( N  _C  k )  x.  (
( A ^ ( N  -  k )
)  x.  ( B ^ k ) ) )  x.  A )  =  ( ( N  _C  k )  x.  ( ( A ^
( ( N  + 
1 )  -  k
) )  x.  ( B ^ k ) ) ) )
4443sumeq2dv 11242 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  ( 0 ... N ) ( ( ( N  _C  k )  x.  ( ( A ^
( N  -  k
) )  x.  ( B ^ k ) ) )  x.  A )  =  sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) ) ) )
45 fzssp1 9947 . . . . . . . 8  |-  ( 0 ... N )  C_  ( 0 ... ( N  +  1 ) )
4645a1i 9 . . . . . . 7  |-  ( ph  ->  ( 0 ... N
)  C_  ( 0 ... ( N  + 
1 ) ) )
47 fznn0sub 9937 . . . . . . . . . . 11  |-  ( k  e.  ( 0 ... ( N  +  1 ) )  ->  (
( N  +  1 )  -  k )  e.  NN0 )
48 expcl 10415 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( ( N  + 
1 )  -  k
)  e.  NN0 )  ->  ( A ^ (
( N  +  1 )  -  k ) )  e.  CC )
498, 47, 48syl2an 287 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  ( A ^ ( ( N  +  1 )  -  k ) )  e.  CC )
5049, 21mulcld 7877 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) )  e.  CC )
5113, 50mulcld 7877 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  (
( N  _C  k
)  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^
k ) ) )  e.  CC )
529, 51sylan2 284 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( N  _C  k
)  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^
k ) ) )  e.  CC )
535adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
0 ... N ) ) )  ->  N  e.  NN0 )
54 eldifi 3225 . . . . . . . . . . . 12  |-  ( k  e.  ( ( 0 ... ( N  + 
1 ) )  \ 
( 0 ... N
) )  ->  k  e.  ( 0 ... ( N  +  1 ) ) )
5554, 10syl 14 . . . . . . . . . . 11  |-  ( k  e.  ( ( 0 ... ( N  + 
1 ) )  \ 
( 0 ... N
) )  ->  k  e.  ZZ )
5655adantl 275 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
0 ... N ) ) )  ->  k  e.  ZZ )
57 eldifn 3226 . . . . . . . . . . 11  |-  ( k  e.  ( ( 0 ... ( N  + 
1 ) )  \ 
( 0 ... N
) )  ->  -.  k  e.  ( 0 ... N ) )
5857adantl 275 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
0 ... N ) ) )  ->  -.  k  e.  ( 0 ... N
) )
59 bcval3 10602 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  k  e.  ZZ  /\  -.  k  e.  ( 0 ... N ) )  ->  ( N  _C  k )  =  0 )
6053, 56, 58, 59syl3anc 1217 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
0 ... N ) ) )  ->  ( N  _C  k )  =  0 )
6160oveq1d 5829 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
0 ... N ) ) )  ->  ( ( N  _C  k )  x.  ( ( A ^
( ( N  + 
1 )  -  k
) )  x.  ( B ^ k ) ) )  =  ( 0  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^ k
) ) ) )
6250mul02d 8246 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  (
0  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^
k ) ) )  =  0 )
6354, 62sylan2 284 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
0 ... N ) ) )  ->  ( 0  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^ k
) ) )  =  0 )
6461, 63eqtrd 2187 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
0 ... N ) ) )  ->  ( ( N  _C  k )  x.  ( ( A ^
( ( N  + 
1 )  -  k
) )  x.  ( B ^ k ) ) )  =  0 )
65 eluzelz 9427 . . . . . . . . . 10  |-  ( n  e.  ( ZZ>= `  0
)  ->  n  e.  ZZ )
6665adantl 275 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( ZZ>= `  0 )
)  ->  n  e.  ZZ )
67 0zd 9158 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( ZZ>= `  0 )
)  ->  0  e.  ZZ )
686adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( ZZ>= `  0 )
)  ->  N  e.  ZZ )
69 fzdcel 9920 . . . . . . . . 9  |-  ( ( n  e.  ZZ  /\  0  e.  ZZ  /\  N  e.  ZZ )  -> DECID  n  e.  (
0 ... N ) )
7066, 67, 68, 69syl3anc 1217 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ZZ>= `  0 )
)  -> DECID  n  e.  (
0 ... N ) )
7170ralrimiva 2527 . . . . . . 7  |-  ( ph  ->  A. n  e.  (
ZZ>= `  0 )DECID  n  e.  ( 0 ... N
) )
72 fzssuz 9945 . . . . . . . 8  |-  ( 0 ... ( N  + 
1 ) )  C_  ( ZZ>= `  0 )
7372a1i 9 . . . . . . 7  |-  ( ph  ->  ( 0 ... ( N  +  1 ) )  C_  ( ZZ>= ` 
0 ) )
7468peano2zd 9268 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( ZZ>= `  0 )
)  ->  ( N  +  1 )  e.  ZZ )
75 fzdcel 9920 . . . . . . . . 9  |-  ( ( n  e.  ZZ  /\  0  e.  ZZ  /\  ( N  +  1 )  e.  ZZ )  -> DECID  n  e.  ( 0 ... ( N  +  1 ) ) )
7666, 67, 74, 75syl3anc 1217 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ZZ>= `  0 )
)  -> DECID  n  e.  (
0 ... ( N  + 
1 ) ) )
7776ralrimiva 2527 . . . . . . 7  |-  ( ph  ->  A. n  e.  (
ZZ>= `  0 )DECID  n  e.  ( 0 ... ( N  +  1 ) ) )
7846, 52, 64, 71, 4, 73, 77isumss 11265 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) ) )  =  sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( N  _C  k )  x.  ( ( A ^
( ( N  + 
1 )  -  k
) )  x.  ( B ^ k ) ) ) )
7925, 44, 783eqtrd 2191 . . . . 5  |-  ( ph  ->  ( sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( A ^ ( N  -  k )
)  x.  ( B ^ k ) ) )  x.  A )  =  sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( N  _C  k )  x.  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) ) ) )
8079adantr 274 . . . 4  |-  ( (
ph  /\  ps )  ->  ( sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( A ^ ( N  -  k )
)  x.  ( B ^ k ) ) )  x.  A )  =  sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( N  _C  k )  x.  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) ) ) )
813, 80eqtrd 2187 . . 3  |-  ( (
ph  /\  ps )  ->  ( ( ( A  +  B ) ^ N )  x.  A
)  =  sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( N  _C  k )  x.  ( ( A ^
( ( N  + 
1 )  -  k
) )  x.  ( B ^ k ) ) ) )
821oveq1d 5829 . . . 4  |-  ( ps 
->  ( ( ( A  +  B ) ^ N )  x.  B
)  =  ( sum_ k  e.  ( 0 ... N ) ( ( N  _C  k
)  x.  ( ( A ^ ( N  -  k ) )  x.  ( B ^
k ) ) )  x.  B ) )
837, 18, 24fsummulc1 11323 . . . . 5  |-  ( ph  ->  ( sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( A ^ ( N  -  k )
)  x.  ( B ^ k ) ) )  x.  B )  =  sum_ k  e.  ( 0 ... N ) ( ( ( N  _C  k )  x.  ( ( A ^
( N  -  k
) )  x.  ( B ^ k ) ) )  x.  B ) )
84 1zzd 9173 . . . . . . . 8  |-  ( ph  ->  1  e.  ZZ )
8518adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  B  e.  CC )
8624, 85mulcld 7877 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( ( N  _C  k )  x.  (
( A ^ ( N  -  k )
)  x.  ( B ^ k ) ) )  x.  B )  e.  CC )
87 oveq2 5822 . . . . . . . . . 10  |-  ( k  =  ( j  - 
1 )  ->  ( N  _C  k )  =  ( N  _C  (
j  -  1 ) ) )
88 oveq2 5822 . . . . . . . . . . . 12  |-  ( k  =  ( j  - 
1 )  ->  ( N  -  k )  =  ( N  -  ( j  -  1 ) ) )
8988oveq2d 5830 . . . . . . . . . . 11  |-  ( k  =  ( j  - 
1 )  ->  ( A ^ ( N  -  k ) )  =  ( A ^ ( N  -  ( j  -  1 ) ) ) )
90 oveq2 5822 . . . . . . . . . . 11  |-  ( k  =  ( j  - 
1 )  ->  ( B ^ k )  =  ( B ^ (
j  -  1 ) ) )
9189, 90oveq12d 5832 . . . . . . . . . 10  |-  ( k  =  ( j  - 
1 )  ->  (
( A ^ ( N  -  k )
)  x.  ( B ^ k ) )  =  ( ( A ^ ( N  -  ( j  -  1 ) ) )  x.  ( B ^ (
j  -  1 ) ) ) )
9287, 91oveq12d 5832 . . . . . . . . 9  |-  ( k  =  ( j  - 
1 )  ->  (
( N  _C  k
)  x.  ( ( A ^ ( N  -  k ) )  x.  ( B ^
k ) ) )  =  ( ( N  _C  ( j  - 
1 ) )  x.  ( ( A ^
( N  -  (
j  -  1 ) ) )  x.  ( B ^ ( j  - 
1 ) ) ) ) )
9392oveq1d 5829 . . . . . . . 8  |-  ( k  =  ( j  - 
1 )  ->  (
( ( N  _C  k )  x.  (
( A ^ ( N  -  k )
)  x.  ( B ^ k ) ) )  x.  B )  =  ( ( ( N  _C  ( j  -  1 ) )  x.  ( ( A ^ ( N  -  ( j  -  1 ) ) )  x.  ( B ^ (
j  -  1 ) ) ) )  x.  B ) )
9484, 4, 6, 86, 93fsumshft 11318 . . . . . . 7  |-  ( ph  -> 
sum_ k  e.  ( 0 ... N ) ( ( ( N  _C  k )  x.  ( ( A ^
( N  -  k
) )  x.  ( B ^ k ) ) )  x.  B )  =  sum_ j  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) ( ( ( N  _C  ( j  - 
1 ) )  x.  ( ( A ^
( N  -  (
j  -  1 ) ) )  x.  ( B ^ ( j  - 
1 ) ) ) )  x.  B ) )
95 oveq1 5821 . . . . . . . . . . 11  |-  ( j  =  k  ->  (
j  -  1 )  =  ( k  - 
1 ) )
9695oveq2d 5830 . . . . . . . . . 10  |-  ( j  =  k  ->  ( N  _C  ( j  - 
1 ) )  =  ( N  _C  (
k  -  1 ) ) )
9795oveq2d 5830 . . . . . . . . . . . 12  |-  ( j  =  k  ->  ( N  -  ( j  -  1 ) )  =  ( N  -  ( k  -  1 ) ) )
9897oveq2d 5830 . . . . . . . . . . 11  |-  ( j  =  k  ->  ( A ^ ( N  -  ( j  -  1 ) ) )  =  ( A ^ ( N  -  ( k  -  1 ) ) ) )
9995oveq2d 5830 . . . . . . . . . . 11  |-  ( j  =  k  ->  ( B ^ ( j  - 
1 ) )  =  ( B ^ (
k  -  1 ) ) )
10098, 99oveq12d 5832 . . . . . . . . . 10  |-  ( j  =  k  ->  (
( A ^ ( N  -  ( j  -  1 ) ) )  x.  ( B ^ ( j  - 
1 ) ) )  =  ( ( A ^ ( N  -  ( k  -  1 ) ) )  x.  ( B ^ (
k  -  1 ) ) ) )
10196, 100oveq12d 5832 . . . . . . . . 9  |-  ( j  =  k  ->  (
( N  _C  (
j  -  1 ) )  x.  ( ( A ^ ( N  -  ( j  - 
1 ) ) )  x.  ( B ^
( j  -  1 ) ) ) )  =  ( ( N  _C  ( k  - 
1 ) )  x.  ( ( A ^
( N  -  (
k  -  1 ) ) )  x.  ( B ^ ( k  - 
1 ) ) ) ) )
102101oveq1d 5829 . . . . . . . 8  |-  ( j  =  k  ->  (
( ( N  _C  ( j  -  1 ) )  x.  (
( A ^ ( N  -  ( j  -  1 ) ) )  x.  ( B ^ ( j  - 
1 ) ) ) )  x.  B )  =  ( ( ( N  _C  ( k  -  1 ) )  x.  ( ( A ^ ( N  -  ( k  -  1 ) ) )  x.  ( B ^ (
k  -  1 ) ) ) )  x.  B ) )
103102cbvsumv 11235 . . . . . . 7  |-  sum_ j  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) ( ( ( N  _C  ( j  -  1 ) )  x.  ( ( A ^ ( N  -  ( j  -  1 ) ) )  x.  ( B ^ (
j  -  1 ) ) ) )  x.  B )  =  sum_ k  e.  ( (
0  +  1 ) ... ( N  + 
1 ) ) ( ( ( N  _C  ( k  -  1 ) )  x.  (
( A ^ ( N  -  ( k  -  1 ) ) )  x.  ( B ^ ( k  - 
1 ) ) ) )  x.  B )
10494, 103eqtrdi 2203 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  ( 0 ... N ) ( ( ( N  _C  k )  x.  ( ( A ^
( N  -  k
) )  x.  ( B ^ k ) ) )  x.  B )  =  sum_ k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) ( ( ( N  _C  ( k  - 
1 ) )  x.  ( ( A ^
( N  -  (
k  -  1 ) ) )  x.  ( B ^ ( k  - 
1 ) ) ) )  x.  B ) )
10528adantr 274 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  N  e.  CC )
106 elfzelz 9906 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) )  ->  k  e.  ZZ )
107106adantl 275 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  k  e.  ZZ )
108107zcnd 9266 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  k  e.  CC )
109 1cnd 7873 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  1  e.  CC )
110105, 108, 109subsub3d 8195 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  ( N  -  ( k  -  1 ) )  =  ( ( N  +  1 )  -  k ) )
111110oveq2d 5830 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  ( A ^ ( N  -  ( k  -  1 ) ) )  =  ( A ^ (
( N  +  1 )  -  k ) ) )
112111oveq1d 5829 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  (
( A ^ ( N  -  ( k  -  1 ) ) )  x.  ( B ^ ( k  - 
1 ) ) )  =  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^ (
k  -  1 ) ) ) )
113112oveq2d 5830 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  (
( N  _C  (
k  -  1 ) )  x.  ( ( A ^ ( N  -  ( k  - 
1 ) ) )  x.  ( B ^
( k  -  1 ) ) ) )  =  ( ( N  _C  ( k  - 
1 ) )  x.  ( ( A ^
( ( N  + 
1 )  -  k
) )  x.  ( B ^ ( k  - 
1 ) ) ) ) )
114113oveq1d 5829 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  (
( ( N  _C  ( k  -  1 ) )  x.  (
( A ^ ( N  -  ( k  -  1 ) ) )  x.  ( B ^ ( k  - 
1 ) ) ) )  x.  B )  =  ( ( ( N  _C  ( k  -  1 ) )  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^ (
k  -  1 ) ) ) )  x.  B ) )
115 0z 9157 . . . . . . . . . . . 12  |-  0  e.  ZZ
116 fzp1ss 9953 . . . . . . . . . . . 12  |-  ( 0  e.  ZZ  ->  (
( 0  +  1 ) ... ( N  +  1 ) ) 
C_  ( 0 ... ( N  +  1 ) ) )
117115, 116ax-mp 5 . . . . . . . . . . 11  |-  ( ( 0  +  1 ) ... ( N  + 
1 ) )  C_  ( 0 ... ( N  +  1 ) )
118117sseli 3120 . . . . . . . . . 10  |-  ( k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) )  ->  k  e.  ( 0 ... ( N  +  1 ) ) )
11910adantl 275 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  k  e.  ZZ )
120 peano2zm 9184 . . . . . . . . . . . . 13  |-  ( k  e.  ZZ  ->  (
k  -  1 )  e.  ZZ )
121119, 120syl 14 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  (
k  -  1 )  e.  ZZ )
122 bccl 10618 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  ( k  -  1 )  e.  ZZ )  ->  ( N  _C  ( k  -  1 ) )  e.  NN0 )
1235, 121, 122syl2an2r 585 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  ( N  _C  ( k  - 
1 ) )  e. 
NN0 )
124123nn0cnd 9124 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  ( N  _C  ( k  - 
1 ) )  e.  CC )
125118, 124sylan2 284 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  ( N  _C  ( k  - 
1 ) )  e.  CC )
126118, 49sylan2 284 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  ( A ^ ( ( N  +  1 )  -  k ) )  e.  CC )
12718adantr 274 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  B  e.  CC )
128 elfznn 9934 . . . . . . . . . . . . . 14  |-  ( k  e.  ( 1 ... ( N  +  1 ) )  ->  k  e.  NN )
129 0p1e1 8926 . . . . . . . . . . . . . . 15  |-  ( 0  +  1 )  =  1
130129oveq1i 5824 . . . . . . . . . . . . . 14  |-  ( ( 0  +  1 ) ... ( N  + 
1 ) )  =  ( 1 ... ( N  +  1 ) )
131128, 130eleq2s 2249 . . . . . . . . . . . . 13  |-  ( k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) )  ->  k  e.  NN )
132131adantl 275 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  k  e.  NN )
133 nnm1nn0 9110 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  (
k  -  1 )  e.  NN0 )
134132, 133syl 14 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  (
k  -  1 )  e.  NN0 )
135127, 134expcld 10528 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  ( B ^ ( k  - 
1 ) )  e.  CC )
136126, 135mulcld 7877 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ ( k  - 
1 ) ) )  e.  CC )
137125, 136, 127mulassd 7880 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  (
( ( N  _C  ( k  -  1 ) )  x.  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ ( k  - 
1 ) ) ) )  x.  B )  =  ( ( N  _C  ( k  - 
1 ) )  x.  ( ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^ (
k  -  1 ) ) )  x.  B
) ) )
138126, 135, 127mulassd 7880 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  (
( ( A ^
( ( N  + 
1 )  -  k
) )  x.  ( B ^ ( k  - 
1 ) ) )  x.  B )  =  ( ( A ^
( ( N  + 
1 )  -  k
) )  x.  (
( B ^ (
k  -  1 ) )  x.  B ) ) )
139 expm1t 10425 . . . . . . . . . . . 12  |-  ( ( B  e.  CC  /\  k  e.  NN )  ->  ( B ^ k
)  =  ( ( B ^ ( k  -  1 ) )  x.  B ) )
14018, 131, 139syl2an 287 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  ( B ^ k )  =  ( ( B ^
( k  -  1 ) )  x.  B
) )
141140oveq2d 5830 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) )  =  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( ( B ^
( k  -  1 ) )  x.  B
) ) )
142138, 141eqtr4d 2190 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  (
( ( A ^
( ( N  + 
1 )  -  k
) )  x.  ( B ^ ( k  - 
1 ) ) )  x.  B )  =  ( ( A ^
( ( N  + 
1 )  -  k
) )  x.  ( B ^ k ) ) )
143142oveq2d 5830 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  (
( N  _C  (
k  -  1 ) )  x.  ( ( ( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ ( k  - 
1 ) ) )  x.  B ) )  =  ( ( N  _C  ( k  - 
1 ) )  x.  ( ( A ^
( ( N  + 
1 )  -  k
) )  x.  ( B ^ k ) ) ) )
144114, 137, 1433eqtrd 2191 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  (
( ( N  _C  ( k  -  1 ) )  x.  (
( A ^ ( N  -  ( k  -  1 ) ) )  x.  ( B ^ ( k  - 
1 ) ) ) )  x.  B )  =  ( ( N  _C  ( k  - 
1 ) )  x.  ( ( A ^
( ( N  + 
1 )  -  k
) )  x.  ( B ^ k ) ) ) )
145144sumeq2dv 11242 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) ( ( ( N  _C  ( k  - 
1 ) )  x.  ( ( A ^
( N  -  (
k  -  1 ) ) )  x.  ( B ^ ( k  - 
1 ) ) ) )  x.  B )  =  sum_ k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) ( ( N  _C  ( k  -  1 ) )  x.  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) ) ) )
146117a1i 9 . . . . . . 7  |-  ( ph  ->  ( ( 0  +  1 ) ... ( N  +  1 ) )  C_  ( 0 ... ( N  + 
1 ) ) )
147124, 50mulcld 7877 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  (
( N  _C  (
k  -  1 ) )  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^
k ) ) )  e.  CC )
148118, 147sylan2 284 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  (
( N  _C  (
k  -  1 ) )  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^
k ) ) )  e.  CC )
1495adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
( 0  +  1 ) ... ( N  +  1 ) ) ) )  ->  N  e.  NN0 )
150 eldifi 3225 . . . . . . . . . . . . 13  |-  ( k  e.  ( ( 0 ... ( N  + 
1 ) )  \ 
( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  k  e.  ( 0 ... ( N  +  1 ) ) )
151150adantl 275 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
( 0  +  1 ) ... ( N  +  1 ) ) ) )  ->  k  e.  ( 0 ... ( N  +  1 ) ) )
152151, 10syl 14 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
( 0  +  1 ) ... ( N  +  1 ) ) ) )  ->  k  e.  ZZ )
153152, 120syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
( 0  +  1 ) ... ( N  +  1 ) ) ) )  ->  (
k  -  1 )  e.  ZZ )
154 eldifn 3226 . . . . . . . . . . . 12  |-  ( k  e.  ( ( 0 ... ( N  + 
1 ) )  \ 
( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  -.  k  e.  ( (
0  +  1 ) ... ( N  + 
1 ) ) )
155154adantl 275 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
( 0  +  1 ) ... ( N  +  1 ) ) ) )  ->  -.  k  e.  ( (
0  +  1 ) ... ( N  + 
1 ) ) )
156 0zd 9158 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
( 0  +  1 ) ... ( N  +  1 ) ) ) )  ->  0  e.  ZZ )
157149nn0zd 9263 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
( 0  +  1 ) ... ( N  +  1 ) ) ) )  ->  N  e.  ZZ )
158 1zzd 9173 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
( 0  +  1 ) ... ( N  +  1 ) ) ) )  ->  1  e.  ZZ )
159 fzaddel 9939 . . . . . . . . . . . . 13  |-  ( ( ( 0  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( k  -  1 )  e.  ZZ  /\  1  e.  ZZ ) )  -> 
( ( k  - 
1 )  e.  ( 0 ... N )  <-> 
( ( k  - 
1 )  +  1 )  e.  ( ( 0  +  1 ) ... ( N  + 
1 ) ) ) )
160156, 157, 153, 158, 159syl22anc 1218 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
( 0  +  1 ) ... ( N  +  1 ) ) ) )  ->  (
( k  -  1 )  e.  ( 0 ... N )  <->  ( (
k  -  1 )  +  1 )  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) ) )
161152zcnd 9266 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
( 0  +  1 ) ... ( N  +  1 ) ) ) )  ->  k  e.  CC )
162 ax-1cn 7804 . . . . . . . . . . . . . 14  |-  1  e.  CC
163 npcan 8063 . . . . . . . . . . . . . 14  |-  ( ( k  e.  CC  /\  1  e.  CC )  ->  ( ( k  - 
1 )  +  1 )  =  k )
164161, 162, 163sylancl 410 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
( 0  +  1 ) ... ( N  +  1 ) ) ) )  ->  (
( k  -  1 )  +  1 )  =  k )
165164eleq1d 2223 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
( 0  +  1 ) ... ( N  +  1 ) ) ) )  ->  (
( ( k  - 
1 )  +  1 )  e.  ( ( 0  +  1 ) ... ( N  + 
1 ) )  <->  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) ) )
166160, 165bitrd 187 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
( 0  +  1 ) ... ( N  +  1 ) ) ) )  ->  (
( k  -  1 )  e.  ( 0 ... N )  <->  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) ) )
167155, 166mtbird 663 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
( 0  +  1 ) ... ( N  +  1 ) ) ) )  ->  -.  ( k  -  1 )  e.  ( 0 ... N ) )
168 bcval3 10602 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  ( k  -  1 )  e.  ZZ  /\  -.  ( k  -  1 )  e.  ( 0 ... N ) )  ->  ( N  _C  ( k  -  1 ) )  =  0 )
169149, 153, 167, 168syl3anc 1217 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
( 0  +  1 ) ... ( N  +  1 ) ) ) )  ->  ( N  _C  ( k  - 
1 ) )  =  0 )
170169oveq1d 5829 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
( 0  +  1 ) ... ( N  +  1 ) ) ) )  ->  (
( N  _C  (
k  -  1 ) )  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^
k ) ) )  =  ( 0  x.  ( ( A ^
( ( N  + 
1 )  -  k
) )  x.  ( B ^ k ) ) ) )
171150, 62sylan2 284 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
( 0  +  1 ) ... ( N  +  1 ) ) ) )  ->  (
0  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^
k ) ) )  =  0 )
172170, 171eqtrd 2187 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
( 0  +  1 ) ... ( N  +  1 ) ) ) )  ->  (
( N  _C  (
k  -  1 ) )  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^
k ) ) )  =  0 )
17367peano2zd 9268 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( ZZ>= `  0 )
)  ->  ( 0  +  1 )  e.  ZZ )
174 fzdcel 9920 . . . . . . . . 9  |-  ( ( n  e.  ZZ  /\  ( 0  +  1 )  e.  ZZ  /\  ( N  +  1
)  e.  ZZ )  -> DECID 
n  e.  ( ( 0  +  1 ) ... ( N  + 
1 ) ) )
17566, 173, 74, 174syl3anc 1217 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ZZ>= `  0 )
)  -> DECID  n  e.  (
( 0  +  1 ) ... ( N  +  1 ) ) )
176175ralrimiva 2527 . . . . . . 7  |-  ( ph  ->  A. n  e.  (
ZZ>= `  0 )DECID  n  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )
177146, 148, 172, 176, 4, 73, 77isumss 11265 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) ( ( N  _C  ( k  -  1 ) )  x.  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) ) )  =  sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( N  _C  ( k  - 
1 ) )  x.  ( ( A ^
( ( N  + 
1 )  -  k
) )  x.  ( B ^ k ) ) ) )
178104, 145, 1773eqtrd 2191 . . . . 5  |-  ( ph  -> 
sum_ k  e.  ( 0 ... N ) ( ( ( N  _C  k )  x.  ( ( A ^
( N  -  k
) )  x.  ( B ^ k ) ) )  x.  B )  =  sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( N  _C  ( k  -  1 ) )  x.  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) ) ) )
17983, 178eqtrd 2187 . . . 4  |-  ( ph  ->  ( sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( A ^ ( N  -  k )
)  x.  ( B ^ k ) ) )  x.  B )  =  sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( N  _C  ( k  -  1 ) )  x.  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) ) ) )
18082, 179sylan9eqr 2209 . . 3  |-  ( (
ph  /\  ps )  ->  ( ( ( A  +  B ) ^ N )  x.  B
)  =  sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( N  _C  ( k  - 
1 ) )  x.  ( ( A ^
( ( N  + 
1 )  -  k
) )  x.  ( B ^ k ) ) ) )
18181, 180oveq12d 5832 . 2  |-  ( (
ph  /\  ps )  ->  ( ( ( ( A  +  B ) ^ N )  x.  A )  +  ( ( ( A  +  B ) ^ N
)  x.  B ) )  =  ( sum_ k  e.  ( 0 ... ( N  + 
1 ) ) ( ( N  _C  k
)  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^
k ) ) )  +  sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( N  _C  ( k  -  1 ) )  x.  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) ) ) ) )
1828, 18addcld 7876 . . . . 5  |-  ( ph  ->  ( A  +  B
)  e.  CC )
183182, 5expp1d 10529 . . . 4  |-  ( ph  ->  ( ( A  +  B ) ^ ( N  +  1 ) )  =  ( ( ( A  +  B
) ^ N )  x.  ( A  +  B ) ) )
184182, 5expcld 10528 . . . . 5  |-  ( ph  ->  ( ( A  +  B ) ^ N
)  e.  CC )
185184, 8, 18adddid 7881 . . . 4  |-  ( ph  ->  ( ( ( A  +  B ) ^ N )  x.  ( A  +  B )
)  =  ( ( ( ( A  +  B ) ^ N
)  x.  A )  +  ( ( ( A  +  B ) ^ N )  x.  B ) ) )
186183, 185eqtrd 2187 . . 3  |-  ( ph  ->  ( ( A  +  B ) ^ ( N  +  1 ) )  =  ( ( ( ( A  +  B ) ^ N
)  x.  A )  +  ( ( ( A  +  B ) ^ N )  x.  B ) ) )
187186adantr 274 . 2  |-  ( (
ph  /\  ps )  ->  ( ( A  +  B ) ^ ( N  +  1 ) )  =  ( ( ( ( A  +  B ) ^ N
)  x.  A )  +  ( ( ( A  +  B ) ^ N )  x.  B ) ) )
188 bcpasc 10617 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  k  e.  ZZ )  ->  ( ( N  _C  k )  +  ( N  _C  ( k  -  1 ) ) )  =  ( ( N  +  1 )  _C  k ) )
1895, 10, 188syl2an 287 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  (
( N  _C  k
)  +  ( N  _C  ( k  - 
1 ) ) )  =  ( ( N  +  1 )  _C  k ) )
190189oveq1d 5829 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  (
( ( N  _C  k )  +  ( N  _C  ( k  -  1 ) ) )  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^
k ) ) )  =  ( ( ( N  +  1 )  _C  k )  x.  ( ( A ^
( ( N  + 
1 )  -  k
) )  x.  ( B ^ k ) ) ) )
19113, 124, 50adddird 7882 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  (
( ( N  _C  k )  +  ( N  _C  ( k  -  1 ) ) )  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^
k ) ) )  =  ( ( ( N  _C  k )  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^ k
) ) )  +  ( ( N  _C  ( k  -  1 ) )  x.  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) ) ) ) )
192190, 191eqtr3d 2189 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  (
( ( N  + 
1 )  _C  k
)  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^
k ) ) )  =  ( ( ( N  _C  k )  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^ k
) ) )  +  ( ( N  _C  ( k  -  1 ) )  x.  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) ) ) ) )
193192sumeq2dv 11242 . . . 4  |-  ( ph  -> 
sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( ( N  +  1 )  _C  k )  x.  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) ) )  =  sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( ( N  _C  k )  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^ k
) ) )  +  ( ( N  _C  ( k  -  1 ) )  x.  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) ) ) ) )
1946peano2zd 9268 . . . . . 6  |-  ( ph  ->  ( N  +  1 )  e.  ZZ )
1954, 194fzfigd 10308 . . . . 5  |-  ( ph  ->  ( 0 ... ( N  +  1 ) )  e.  Fin )
196195, 51, 147fsumadd 11280 . . . 4  |-  ( ph  -> 
sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( ( N  _C  k )  x.  ( ( A ^
( ( N  + 
1 )  -  k
) )  x.  ( B ^ k ) ) )  +  ( ( N  _C  ( k  -  1 ) )  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^ k
) ) ) )  =  ( sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( N  _C  k )  x.  ( ( A ^
( ( N  + 
1 )  -  k
) )  x.  ( B ^ k ) ) )  +  sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( N  _C  ( k  - 
1 ) )  x.  ( ( A ^
( ( N  + 
1 )  -  k
) )  x.  ( B ^ k ) ) ) ) )
197193, 196eqtrd 2187 . . 3  |-  ( ph  -> 
sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( ( N  +  1 )  _C  k )  x.  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) ) )  =  ( sum_ k  e.  ( 0 ... ( N  + 
1 ) ) ( ( N  _C  k
)  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^
k ) ) )  +  sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( N  _C  ( k  -  1 ) )  x.  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) ) ) ) )
198197adantr 274 . 2  |-  ( (
ph  /\  ps )  -> 
sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( ( N  +  1 )  _C  k )  x.  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) ) )  =  ( sum_ k  e.  ( 0 ... ( N  + 
1 ) ) ( ( N  _C  k
)  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^
k ) ) )  +  sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( N  _C  ( k  -  1 ) )  x.  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) ) ) ) )
199181, 187, 1983eqtr4d 2197 1  |-  ( (
ph  /\  ps )  ->  ( ( A  +  B ) ^ ( N  +  1 ) )  =  sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( ( N  +  1 )  _C  k )  x.  ( ( A ^
( ( N  + 
1 )  -  k
) )  x.  ( B ^ k ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104  DECID wdc 820    = wceq 1332    e. wcel 2125    \ cdif 3095    C_ wss 3098   ` cfv 5163  (class class class)co 5814   CCcc 7709   0cc0 7711   1c1 7712    + caddc 7714    x. cmul 7716    - cmin 8025   NNcn 8812   NN0cn0 9069   ZZcz 9146   ZZ>=cuz 9418   ...cfz 9890   ^cexp 10396    _C cbc 10598   sum_csu 11227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-coll 4075  ax-sep 4078  ax-nul 4086  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-iinf 4541  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-mulrcl 7810  ax-addcom 7811  ax-mulcom 7812  ax-addass 7813  ax-mulass 7814  ax-distr 7815  ax-i2m1 7816  ax-0lt1 7817  ax-1rid 7818  ax-0id 7819  ax-rnegex 7820  ax-precex 7821  ax-cnre 7822  ax-pre-ltirr 7823  ax-pre-ltwlin 7824  ax-pre-lttrn 7825  ax-pre-apti 7826  ax-pre-ltadd 7827  ax-pre-mulgt0 7828  ax-pre-mulext 7829  ax-arch 7830  ax-caucvg 7831
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-reu 2439  df-rmo 2440  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-if 3502  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-tr 4059  df-id 4248  df-po 4251  df-iso 4252  df-iord 4321  df-on 4323  df-ilim 4324  df-suc 4326  df-iom 4544  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-isom 5172  df-riota 5770  df-ov 5817  df-oprab 5818  df-mpo 5819  df-1st 6078  df-2nd 6079  df-recs 6242  df-irdg 6307  df-frec 6328  df-1o 6353  df-oadd 6357  df-er 6469  df-en 6675  df-dom 6676  df-fin 6677  df-pnf 7893  df-mnf 7894  df-xr 7895  df-ltxr 7896  df-le 7897  df-sub 8027  df-neg 8028  df-reap 8429  df-ap 8436  df-div 8525  df-inn 8813  df-2 8871  df-3 8872  df-4 8873  df-n0 9070  df-z 9147  df-uz 9419  df-q 9507  df-rp 9539  df-fz 9891  df-fzo 10020  df-seqfrec 10323  df-exp 10397  df-fac 10577  df-bc 10599  df-ihash 10627  df-cj 10719  df-re 10720  df-im 10721  df-rsqrt 10875  df-abs 10876  df-clim 11153  df-sumdc 11228
This theorem is referenced by:  binom  11358
  Copyright terms: Public domain W3C validator