| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfzoel2 | Unicode version | ||
| Description: Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| elfzoel2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fzo 10267 |
. 2
| |
| 2 | 1 | elmpocl2 6145 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-iota 5233 df-fun 5274 df-fv 5280 df-ov 5949 df-oprab 5950 df-mpo 5951 df-fzo 10267 |
| This theorem is referenced by: elfzoelz 10271 elfzo2 10274 elfzole1 10280 elfzolt2 10281 elfzolt3 10282 elfzolt2b 10283 elfzolt3b 10284 fzonel 10285 elfzouz2 10286 fzonnsub 10295 fzoss1 10297 fzospliti 10302 fzodisj 10304 fzoaddel 10318 fzo0addelr 10320 elfzoextl 10322 elfzoext 10323 elincfzoext 10324 fzosubel 10325 fzoend 10353 ssfzo12 10355 fzofzp1 10358 peano2fzor 10363 fzostep1 10368 iseqf1olemqk 10654 fzomaxdiflem 11456 fzo0dvdseq 12201 fzocongeq 12202 addmodlteqALT 12203 gsumfzfsumlemm 14382 |
| Copyright terms: Public domain | W3C validator |