ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzoel2 Unicode version

Theorem elfzoel2 10215
Description: Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.)
Assertion
Ref Expression
elfzoel2  |-  ( A  e.  ( B..^ C
)  ->  C  e.  ZZ )

Proof of Theorem elfzoel2
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fzo 10212 . 2  |- ..^  =  ( m  e.  ZZ ,  n  e.  ZZ  |->  ( m ... ( n  - 
1 ) ) )
21elmpocl2 6117 1  |-  ( A  e.  ( B..^ C
)  ->  C  e.  ZZ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2164  (class class class)co 5919   1c1 7875    - cmin 8192   ZZcz 9320   ...cfz 10077  ..^cfzo 10211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-fzo 10212
This theorem is referenced by:  elfzoelz  10216  elfzo2  10219  elfzole1  10225  elfzolt2  10226  elfzolt3  10227  elfzolt2b  10228  elfzolt3b  10229  fzonel  10230  elfzouz2  10231  fzonnsub  10239  fzoss1  10241  fzospliti  10246  fzodisj  10248  fzoaddel  10262  fzosubel  10264  fzoend  10292  ssfzo12  10294  fzofzp1  10297  peano2fzor  10302  fzostep1  10307  iseqf1olemqk  10581  fzomaxdiflem  11259  fzo0dvdseq  12002  fzocongeq  12003  addmodlteqALT  12004  gsumfzfsumlemm  14086
  Copyright terms: Public domain W3C validator