| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfzoel2 | Unicode version | ||
| Description: Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| elfzoel2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fzo 10339 |
. 2
| |
| 2 | 1 | elmpocl2 6202 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-fzo 10339 |
| This theorem is referenced by: elfzoelz 10343 elfzo2 10346 elfzole1 10352 elfzolt2 10353 elfzolt3 10354 elfzolt2b 10355 elfzolt3b 10356 fzonel 10357 elfzouz2 10358 fzonnsub 10367 fzoss1 10369 fzospliti 10374 fzodisj 10376 fzoaddel 10393 fzo0addelr 10395 elfzoextl 10397 elfzoext 10398 elincfzoext 10399 fzosubel 10400 fzoend 10428 ssfzo12 10430 fzofzp1 10433 peano2fzor 10438 fzostep1 10443 iseqf1olemqk 10729 fzomaxdiflem 11623 fzo0dvdseq 12368 fzocongeq 12369 addmodlteqALT 12370 gsumfzfsumlemm 14551 |
| Copyright terms: Public domain | W3C validator |