ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzoel2 Unicode version

Theorem elfzoel2 10212
Description: Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.)
Assertion
Ref Expression
elfzoel2  |-  ( A  e.  ( B..^ C
)  ->  C  e.  ZZ )

Proof of Theorem elfzoel2
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fzo 10209 . 2  |- ..^  =  ( m  e.  ZZ ,  n  e.  ZZ  |->  ( m ... ( n  - 
1 ) ) )
21elmpocl2 6115 1  |-  ( A  e.  ( B..^ C
)  ->  C  e.  ZZ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2164  (class class class)co 5918   1c1 7873    - cmin 8190   ZZcz 9317   ...cfz 10074  ..^cfzo 10208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-fzo 10209
This theorem is referenced by:  elfzoelz  10213  elfzo2  10216  elfzole1  10222  elfzolt2  10223  elfzolt3  10224  elfzolt2b  10225  elfzolt3b  10226  fzonel  10227  elfzouz2  10228  fzonnsub  10236  fzoss1  10238  fzospliti  10243  fzodisj  10245  fzoaddel  10259  fzosubel  10261  fzoend  10289  ssfzo12  10291  fzofzp1  10294  peano2fzor  10299  fzostep1  10304  iseqf1olemqk  10578  fzomaxdiflem  11256  fzo0dvdseq  11999  fzocongeq  12000  addmodlteqALT  12001  gsumfzfsumlemm  14075
  Copyright terms: Public domain W3C validator