| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfzoel2 | Unicode version | ||
| Description: Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| elfzoel2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fzo 10235 |
. 2
| |
| 2 | 1 | elmpocl2 6124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-fzo 10235 |
| This theorem is referenced by: elfzoelz 10239 elfzo2 10242 elfzole1 10248 elfzolt2 10249 elfzolt3 10250 elfzolt2b 10251 elfzolt3b 10252 fzonel 10253 elfzouz2 10254 fzonnsub 10262 fzoss1 10264 fzospliti 10269 fzodisj 10271 fzoaddel 10285 fzosubel 10287 fzoend 10315 ssfzo12 10317 fzofzp1 10320 peano2fzor 10325 fzostep1 10330 iseqf1olemqk 10616 fzomaxdiflem 11294 fzo0dvdseq 12039 fzocongeq 12040 addmodlteqALT 12041 gsumfzfsumlemm 14219 |
| Copyright terms: Public domain | W3C validator |