ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mhmrcl2 Unicode version

Theorem mhmrcl2 12860
Description: Reverse closure of a monoid homomorphism. (Contributed by Mario Carneiro, 7-Mar-2015.)
Assertion
Ref Expression
mhmrcl2  |-  ( F  e.  ( S MndHom  T
)  ->  T  e.  Mnd )

Proof of Theorem mhmrcl2
Dummy variables  f  s  t  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mhm 12856 . 2  |- MndHom  =  ( s  e.  Mnd , 
t  e.  Mnd  |->  { f  e.  ( (
Base `  t )  ^m  ( Base `  s
) )  |  ( A. x  e.  (
Base `  s ) A. y  e.  ( Base `  s ) ( f `  ( x ( +g  `  s
) y ) )  =  ( ( f `
 x ) ( +g  `  t ) ( f `  y
) )  /\  (
f `  ( 0g `  s ) )  =  ( 0g `  t
) ) } )
21elmpocl2 6073 1  |-  ( F  e.  ( S MndHom  T
)  ->  T  e.  Mnd )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   A.wral 2455   {crab 2459   ` cfv 5218  (class class class)co 5877    ^m cmap 6650   Basecbs 12464   +g cplusg 12538   0gc0g 12710   Mndcmnd 12822   MndHom cmhm 12854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-mhm 12856
This theorem is referenced by:  mhmf1o  12866  mhmco  12879  mhmima  12880  mhmmulg  13029
  Copyright terms: Public domain W3C validator