ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccssico2 Unicode version

Theorem iccssico2 9883
Description: Condition for a closed interval to be a subset of a closed-below, open-above interval. (Contributed by Mario Carneiro, 20-Feb-2015.)
Assertion
Ref Expression
iccssico2  |-  ( ( C  e.  ( A [,) B )  /\  D  e.  ( A [,) B ) )  -> 
( C [,] D
)  C_  ( A [,) B ) )

Proof of Theorem iccssico2
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ico 9830 . . . 4  |-  [,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <_  z  /\  z  <  y ) } )
21elmpocl1 6037 . . 3  |-  ( C  e.  ( A [,) B )  ->  A  e.  RR* )
32adantr 274 . 2  |-  ( ( C  e.  ( A [,) B )  /\  D  e.  ( A [,) B ) )  ->  A  e.  RR* )
41elmpocl2 6038 . . 3  |-  ( C  e.  ( A [,) B )  ->  B  e.  RR* )
54adantr 274 . 2  |-  ( ( C  e.  ( A [,) B )  /\  D  e.  ( A [,) B ) )  ->  B  e.  RR* )
61elixx3g 9837 . . . . 5  |-  ( C  e.  ( A [,) B )  <->  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <_  C  /\  C  <  B ) ) )
76simprbi 273 . . . 4  |-  ( C  e.  ( A [,) B )  ->  ( A  <_  C  /\  C  <  B ) )
87simpld 111 . . 3  |-  ( C  e.  ( A [,) B )  ->  A  <_  C )
98adantr 274 . 2  |-  ( ( C  e.  ( A [,) B )  /\  D  e.  ( A [,) B ) )  ->  A  <_  C )
101elixx3g 9837 . . . . 5  |-  ( D  e.  ( A [,) B )  <->  ( ( A  e.  RR*  /\  B  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <_  D  /\  D  <  B ) ) )
1110simprbi 273 . . . 4  |-  ( D  e.  ( A [,) B )  ->  ( A  <_  D  /\  D  <  B ) )
1211simprd 113 . . 3  |-  ( D  e.  ( A [,) B )  ->  D  <  B )
1312adantl 275 . 2  |-  ( ( C  e.  ( A [,) B )  /\  D  e.  ( A [,) B ) )  ->  D  <  B )
14 iccssico 9881 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( A  <_  C  /\  D  <  B ) )  ->  ( C [,] D )  C_  ( A [,) B ) )
153, 5, 9, 13, 14syl22anc 1229 1  |-  ( ( C  e.  ( A [,) B )  /\  D  e.  ( A [,) B ) )  -> 
( C [,] D
)  C_  ( A [,) B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 968    e. wcel 2136   {crab 2448    C_ wss 3116   class class class wbr 3982  (class class class)co 5842   RR*cxr 7932    < clt 7933    <_ cle 7934   [,)cico 9826   [,]cicc 9827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-ico 9830  df-icc 9831
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator