ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccssico2 Unicode version

Theorem iccssico2 10051
Description: Condition for a closed interval to be a subset of a closed-below, open-above interval. (Contributed by Mario Carneiro, 20-Feb-2015.)
Assertion
Ref Expression
iccssico2  |-  ( ( C  e.  ( A [,) B )  /\  D  e.  ( A [,) B ) )  -> 
( C [,] D
)  C_  ( A [,) B ) )

Proof of Theorem iccssico2
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ico 9998 . . . 4  |-  [,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <_  z  /\  z  <  y ) } )
21elmpocl1 6132 . . 3  |-  ( C  e.  ( A [,) B )  ->  A  e.  RR* )
32adantr 276 . 2  |-  ( ( C  e.  ( A [,) B )  /\  D  e.  ( A [,) B ) )  ->  A  e.  RR* )
41elmpocl2 6133 . . 3  |-  ( C  e.  ( A [,) B )  ->  B  e.  RR* )
54adantr 276 . 2  |-  ( ( C  e.  ( A [,) B )  /\  D  e.  ( A [,) B ) )  ->  B  e.  RR* )
61elixx3g 10005 . . . . 5  |-  ( C  e.  ( A [,) B )  <->  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <_  C  /\  C  <  B ) ) )
76simprbi 275 . . . 4  |-  ( C  e.  ( A [,) B )  ->  ( A  <_  C  /\  C  <  B ) )
87simpld 112 . . 3  |-  ( C  e.  ( A [,) B )  ->  A  <_  C )
98adantr 276 . 2  |-  ( ( C  e.  ( A [,) B )  /\  D  e.  ( A [,) B ) )  ->  A  <_  C )
101elixx3g 10005 . . . . 5  |-  ( D  e.  ( A [,) B )  <->  ( ( A  e.  RR*  /\  B  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <_  D  /\  D  <  B ) ) )
1110simprbi 275 . . . 4  |-  ( D  e.  ( A [,) B )  ->  ( A  <_  D  /\  D  <  B ) )
1211simprd 114 . . 3  |-  ( D  e.  ( A [,) B )  ->  D  <  B )
1312adantl 277 . 2  |-  ( ( C  e.  ( A [,) B )  /\  D  e.  ( A [,) B ) )  ->  D  <  B )
14 iccssico 10049 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( A  <_  C  /\  D  <  B ) )  ->  ( C [,] D )  C_  ( A [,) B ) )
153, 5, 9, 13, 14syl22anc 1250 1  |-  ( ( C  e.  ( A [,) B )  /\  D  e.  ( A [,) B ) )  -> 
( C [,] D
)  C_  ( A [,) B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    e. wcel 2175   {crab 2487    C_ wss 3165   class class class wbr 4043  (class class class)co 5934   RR*cxr 8088    < clt 8089    <_ cle 8090   [,)cico 9994   [,]cicc 9995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-cnex 7998  ax-resscn 7999  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-id 4338  df-po 4341  df-iso 4342  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-iota 5229  df-fun 5270  df-fv 5276  df-ov 5937  df-oprab 5938  df-mpo 5939  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-ico 9998  df-icc 9999
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator