| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iccssico2 | Unicode version | ||
| Description: Condition for a closed interval to be a subset of a closed-below, open-above interval. (Contributed by Mario Carneiro, 20-Feb-2015.) |
| Ref | Expression |
|---|---|
| iccssico2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ico 10015 |
. . . 4
| |
| 2 | 1 | elmpocl1 6141 |
. . 3
|
| 3 | 2 | adantr 276 |
. 2
|
| 4 | 1 | elmpocl2 6142 |
. . 3
|
| 5 | 4 | adantr 276 |
. 2
|
| 6 | 1 | elixx3g 10022 |
. . . . 5
|
| 7 | 6 | simprbi 275 |
. . . 4
|
| 8 | 7 | simpld 112 |
. . 3
|
| 9 | 8 | adantr 276 |
. 2
|
| 10 | 1 | elixx3g 10022 |
. . . . 5
|
| 11 | 10 | simprbi 275 |
. . . 4
|
| 12 | 11 | simprd 114 |
. . 3
|
| 13 | 12 | adantl 277 |
. 2
|
| 14 | iccssico 10066 |
. 2
| |
| 15 | 3, 5, 9, 13, 14 | syl22anc 1250 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-id 4339 df-po 4342 df-iso 4343 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-iota 5231 df-fun 5272 df-fv 5278 df-ov 5946 df-oprab 5947 df-mpo 5948 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-ico 10015 df-icc 10016 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |