ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccssico2 Unicode version

Theorem iccssico2 9730
Description: Condition for a closed interval to be a subset of a closed-below, open-above interval. (Contributed by Mario Carneiro, 20-Feb-2015.)
Assertion
Ref Expression
iccssico2  |-  ( ( C  e.  ( A [,) B )  /\  D  e.  ( A [,) B ) )  -> 
( C [,] D
)  C_  ( A [,) B ) )

Proof of Theorem iccssico2
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ico 9677 . . . 4  |-  [,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <_  z  /\  z  <  y ) } )
21elmpocl1 5969 . . 3  |-  ( C  e.  ( A [,) B )  ->  A  e.  RR* )
32adantr 274 . 2  |-  ( ( C  e.  ( A [,) B )  /\  D  e.  ( A [,) B ) )  ->  A  e.  RR* )
41elmpocl2 5970 . . 3  |-  ( C  e.  ( A [,) B )  ->  B  e.  RR* )
54adantr 274 . 2  |-  ( ( C  e.  ( A [,) B )  /\  D  e.  ( A [,) B ) )  ->  B  e.  RR* )
61elixx3g 9684 . . . . 5  |-  ( C  e.  ( A [,) B )  <->  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <_  C  /\  C  <  B ) ) )
76simprbi 273 . . . 4  |-  ( C  e.  ( A [,) B )  ->  ( A  <_  C  /\  C  <  B ) )
87simpld 111 . . 3  |-  ( C  e.  ( A [,) B )  ->  A  <_  C )
98adantr 274 . 2  |-  ( ( C  e.  ( A [,) B )  /\  D  e.  ( A [,) B ) )  ->  A  <_  C )
101elixx3g 9684 . . . . 5  |-  ( D  e.  ( A [,) B )  <->  ( ( A  e.  RR*  /\  B  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <_  D  /\  D  <  B ) ) )
1110simprbi 273 . . . 4  |-  ( D  e.  ( A [,) B )  ->  ( A  <_  D  /\  D  <  B ) )
1211simprd 113 . . 3  |-  ( D  e.  ( A [,) B )  ->  D  <  B )
1312adantl 275 . 2  |-  ( ( C  e.  ( A [,) B )  /\  D  e.  ( A [,) B ) )  ->  D  <  B )
14 iccssico 9728 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( A  <_  C  /\  D  <  B ) )  ->  ( C [,] D )  C_  ( A [,) B ) )
153, 5, 9, 13, 14syl22anc 1217 1  |-  ( ( C  e.  ( A [,) B )  /\  D  e.  ( A [,) B ) )  -> 
( C [,] D
)  C_  ( A [,) B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 962    e. wcel 1480   {crab 2420    C_ wss 3071   class class class wbr 3929  (class class class)co 5774   RR*cxr 7799    < clt 7800    <_ cle 7801   [,)cico 9673   [,]cicc 9674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-ico 9677  df-icc 9678
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator