ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ensn1g Unicode version

Theorem ensn1g 6775
Description: A singleton is equinumerous to ordinal one. (Contributed by NM, 23-Apr-2004.)
Assertion
Ref Expression
ensn1g  |-  ( A  e.  V  ->  { A }  ~~  1o )

Proof of Theorem ensn1g
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 sneq 3594 . . 3  |-  ( x  =  A  ->  { x }  =  { A } )
21breq1d 3999 . 2  |-  ( x  =  A  ->  ( { x }  ~~  1o 
<->  { A }  ~~  1o ) )
3 vex 2733 . . 3  |-  x  e. 
_V
43ensn1 6774 . 2  |-  { x }  ~~  1o
52, 4vtoclg 2790 1  |-  ( A  e.  V  ->  { A }  ~~  1o )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    e. wcel 2141   {csn 3583   class class class wbr 3989   1oc1o 6388    ~~ cen 6716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-suc 4356  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-1o 6395  df-en 6719
This theorem is referenced by:  enpr1g  6776  en1bg  6778  en2sn  6791  snfig  6792  enpr2d  6795  snnen2og  6837  en1eqsn  6925  en1eqsnbi  6926  pr2nelem  7168  dju1en  7190
  Copyright terms: Public domain W3C validator