ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ensn1g Unicode version

Theorem ensn1g 6763
Description: A singleton is equinumerous to ordinal one. (Contributed by NM, 23-Apr-2004.)
Assertion
Ref Expression
ensn1g  |-  ( A  e.  V  ->  { A }  ~~  1o )

Proof of Theorem ensn1g
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 sneq 3587 . . 3  |-  ( x  =  A  ->  { x }  =  { A } )
21breq1d 3992 . 2  |-  ( x  =  A  ->  ( { x }  ~~  1o 
<->  { A }  ~~  1o ) )
3 vex 2729 . . 3  |-  x  e. 
_V
43ensn1 6762 . 2  |-  { x }  ~~  1o
52, 4vtoclg 2786 1  |-  ( A  e.  V  ->  { A }  ~~  1o )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136   {csn 3576   class class class wbr 3982   1oc1o 6377    ~~ cen 6704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-suc 4349  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-1o 6384  df-en 6707
This theorem is referenced by:  enpr1g  6764  en1bg  6766  en2sn  6779  snfig  6780  enpr2d  6783  snnen2og  6825  en1eqsn  6913  en1eqsnbi  6914  pr2nelem  7147  dju1en  7169
  Copyright terms: Public domain W3C validator