ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  entri GIF version

Theorem entri 6845
Description: A chained equinumerosity inference. (Contributed by NM, 25-Sep-2004.)
Hypotheses
Ref Expression
entri.1 𝐴𝐵
entri.2 𝐵𝐶
Assertion
Ref Expression
entri 𝐴𝐶

Proof of Theorem entri
StepHypRef Expression
1 entri.1 . 2 𝐴𝐵
2 entri.2 . 2 𝐵𝐶
3 entr 6843 . 2 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
41, 2, 3mp2an 426 1 𝐴𝐶
Colors of variables: wff set class
Syntax hints:   class class class wbr 4033  cen 6797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-er 6592  df-en 6800
This theorem is referenced by:  entr2i  6846  entr3i  6847  entr4i  6848  xnn0nnen  10529  xpomen  12612  znnen  12615  qnnen  12648
  Copyright terms: Public domain W3C validator