ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  entr Unicode version

Theorem entr 6852
Description: Transitivity of equinumerosity. Theorem 3 of [Suppes] p. 92. (Contributed by NM, 9-Jun-1998.)
Assertion
Ref Expression
entr  |-  ( ( A  ~~  B  /\  B  ~~  C )  ->  A  ~~  C )

Proof of Theorem entr
StepHypRef Expression
1 ener 6847 . . . 4  |-  ~~  Er  _V
21a1i 9 . . 3  |-  ( T. 
->  ~~  Er  _V )
32ertr 6616 . 2  |-  ( T. 
->  ( ( A  ~~  B  /\  B  ~~  C
)  ->  A  ~~  C ) )
43mptru 1373 1  |-  ( ( A  ~~  B  /\  B  ~~  C )  ->  A  ~~  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   T. wtru 1365   _Vcvv 2763   class class class wbr 4034    Er wer 6598    ~~ cen 6806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-er 6601  df-en 6809
This theorem is referenced by:  entri  6854  en2sn  6881  xpsnen2g  6897  enen1  6910  enen2  6911  ssenen  6921  phplem4  6925  snnen2og  6929  php5dom  6933  phplem4on  6937  dif1en  6949  dif1enen  6950  fisbth  6953  diffisn  6963  exmidpw2en  6982  unsnfidcex  6990  unsnfidcel  6991  f1finf1o  7022  en1eqsn  7023  endjusym  7171  carden2bex  7268  pm54.43  7269  pr2ne  7271  djuen  7294  djuenun  7295  djuassen  7300  frecfzen2  10536  uzennn  10545  hashunlem  10913  hashxp  10935  1nprm  12307  hashdvds  12414  4sqlem11  12595  unennn  12639  ennnfonelemen  12663  ennnfonelemim  12666  exmidunben  12668  ctinfom  12670  ctinf  12672  pwf1oexmid  15730  nnnninfen  15752
  Copyright terms: Public domain W3C validator