| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > entr | Unicode version | ||
| Description: Transitivity of equinumerosity. Theorem 3 of [Suppes] p. 92. (Contributed by NM, 9-Jun-1998.) |
| Ref | Expression |
|---|---|
| entr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ener 6873 |
. . . 4
| |
| 2 | 1 | a1i 9 |
. . 3
|
| 3 | 2 | ertr 6637 |
. 2
|
| 4 | 3 | mptru 1382 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-er 6622 df-en 6830 |
| This theorem is referenced by: entri 6880 en2sn 6907 xpsnen2g 6926 enen1 6939 enen2 6940 ssenen 6950 phplem4 6954 snnen2og 6958 php5dom 6962 phplem4on 6966 dif1en 6978 dif1enen 6979 fisbth 6982 diffisn 6992 exmidpw2en 7011 unsnfidcex 7019 unsnfidcel 7020 f1finf1o 7051 en1eqsn 7052 endjusym 7200 carden2bex 7299 pm54.43 7300 pr2ne 7302 djuen 7325 djuenun 7326 djuassen 7331 frecfzen2 10574 uzennn 10583 hashunlem 10951 hashxp 10973 1nprm 12469 hashdvds 12576 4sqlem11 12757 unennn 12801 ennnfonelemen 12825 ennnfonelemim 12828 exmidunben 12830 ctinfom 12832 ctinf 12834 pwf1oexmid 15973 nnnninfen 15995 |
| Copyright terms: Public domain | W3C validator |