| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > entr | Unicode version | ||
| Description: Transitivity of equinumerosity. Theorem 3 of [Suppes] p. 92. (Contributed by NM, 9-Jun-1998.) |
| Ref | Expression |
|---|---|
| entr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ener 6894 |
. . . 4
| |
| 2 | 1 | a1i 9 |
. . 3
|
| 3 | 2 | ertr 6658 |
. 2
|
| 4 | 3 | mptru 1382 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-er 6643 df-en 6851 |
| This theorem is referenced by: entri 6901 en2sn 6929 xpsnen2g 6949 enen1 6962 enen2 6963 ssenen 6973 phplem4 6977 snnen2og 6981 php5dom 6985 phplem4on 6990 dif1en 7002 dif1enen 7003 fisbth 7006 diffisn 7016 exmidpw2en 7035 unsnfidcex 7043 unsnfidcel 7044 f1finf1o 7075 en1eqsn 7076 endjusym 7224 carden2bex 7323 pm54.43 7324 pr2ne 7326 djuen 7354 djuenun 7355 djuassen 7360 frecfzen2 10609 uzennn 10618 hashunlem 10986 hashxp 11008 1nprm 12551 hashdvds 12658 4sqlem11 12839 unennn 12883 ennnfonelemen 12907 ennnfonelemim 12910 exmidunben 12912 ctinfom 12914 ctinf 12916 umgredgnlp 15856 pwf1oexmid 16138 nnnninfen 16160 |
| Copyright terms: Public domain | W3C validator |