| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > entr | Unicode version | ||
| Description: Transitivity of equinumerosity. Theorem 3 of [Suppes] p. 92. (Contributed by NM, 9-Jun-1998.) |
| Ref | Expression |
|---|---|
| entr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ener 6839 |
. . . 4
| |
| 2 | 1 | a1i 9 |
. . 3
|
| 3 | 2 | ertr 6608 |
. 2
|
| 4 | 3 | mptru 1373 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-er 6593 df-en 6801 |
| This theorem is referenced by: entri 6846 en2sn 6873 xpsnen2g 6889 enen1 6902 enen2 6903 ssenen 6913 phplem4 6917 snnen2og 6921 php5dom 6925 phplem4on 6929 dif1en 6941 dif1enen 6942 fisbth 6945 diffisn 6955 exmidpw2en 6974 unsnfidcex 6982 unsnfidcel 6983 f1finf1o 7014 en1eqsn 7015 endjusym 7163 carden2bex 7258 pm54.43 7259 pr2ne 7261 djuen 7280 djuenun 7281 djuassen 7286 frecfzen2 10521 uzennn 10530 hashunlem 10898 hashxp 10920 1nprm 12292 hashdvds 12399 4sqlem11 12580 unennn 12624 ennnfonelemen 12648 ennnfonelemim 12651 exmidunben 12653 ctinfom 12655 ctinf 12657 pwf1oexmid 15654 nnnninfen 15675 |
| Copyright terms: Public domain | W3C validator |