Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > suplub2ti | Unicode version |
Description: Bidirectional form of suplubti 6977. (Contributed by Jim Kingdon, 17-Jan-2022.) |
Ref | Expression |
---|---|
supmoti.ti | |
supclti.2 | |
suplub2ti.or | |
suplub2ti.3 |
Ref | Expression |
---|---|
suplub2ti |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supmoti.ti | . . . 4 | |
2 | supclti.2 | . . . 4 | |
3 | 1, 2 | suplubti 6977 | . . 3 |
4 | 3 | expdimp 257 | . 2 |
5 | breq2 3993 | . . . 4 | |
6 | 5 | cbvrexv 2697 | . . 3 |
7 | simplll 528 | . . . . . . 7 | |
8 | simplr 525 | . . . . . . 7 | |
9 | 1, 2 | supubti 6976 | . . . . . . 7 |
10 | 7, 8, 9 | sylc 62 | . . . . . 6 |
11 | simpr 109 | . . . . . . 7 | |
12 | suplub2ti.or | . . . . . . . . 9 | |
13 | 12 | ad3antrrr 489 | . . . . . . . 8 |
14 | simpllr 529 | . . . . . . . 8 | |
15 | suplub2ti.3 | . . . . . . . . . 10 | |
16 | 15 | ad3antrrr 489 | . . . . . . . . 9 |
17 | 16, 8 | sseldd 3148 | . . . . . . . 8 |
18 | 1, 2 | supclti 6975 | . . . . . . . . 9 |
19 | 18 | ad3antrrr 489 | . . . . . . . 8 |
20 | sowlin 4305 | . . . . . . . 8 | |
21 | 13, 14, 17, 19, 20 | syl13anc 1235 | . . . . . . 7 |
22 | 11, 21 | mpd 13 | . . . . . 6 |
23 | 10, 22 | ecased 1344 | . . . . 5 |
24 | 23 | ex 114 | . . . 4 |
25 | 24 | rexlimdva 2587 | . . 3 |
26 | 6, 25 | syl5bi 151 | . 2 |
27 | 4, 26 | impbid 128 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 703 wcel 2141 wral 2448 wrex 2449 wss 3121 class class class wbr 3989 wor 4280 csup 6959 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-iso 4282 df-iota 5160 df-riota 5809 df-sup 6961 |
This theorem is referenced by: suprlubex 8868 |
Copyright terms: Public domain | W3C validator |