Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > suplub2ti | Unicode version |
Description: Bidirectional form of suplubti 6965. (Contributed by Jim Kingdon, 17-Jan-2022.) |
Ref | Expression |
---|---|
supmoti.ti | |
supclti.2 | |
suplub2ti.or | |
suplub2ti.3 |
Ref | Expression |
---|---|
suplub2ti |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supmoti.ti | . . . 4 | |
2 | supclti.2 | . . . 4 | |
3 | 1, 2 | suplubti 6965 | . . 3 |
4 | 3 | expdimp 257 | . 2 |
5 | breq2 3986 | . . . 4 | |
6 | 5 | cbvrexv 2693 | . . 3 |
7 | simplll 523 | . . . . . . 7 | |
8 | simplr 520 | . . . . . . 7 | |
9 | 1, 2 | supubti 6964 | . . . . . . 7 |
10 | 7, 8, 9 | sylc 62 | . . . . . 6 |
11 | simpr 109 | . . . . . . 7 | |
12 | suplub2ti.or | . . . . . . . . 9 | |
13 | 12 | ad3antrrr 484 | . . . . . . . 8 |
14 | simpllr 524 | . . . . . . . 8 | |
15 | suplub2ti.3 | . . . . . . . . . 10 | |
16 | 15 | ad3antrrr 484 | . . . . . . . . 9 |
17 | 16, 8 | sseldd 3143 | . . . . . . . 8 |
18 | 1, 2 | supclti 6963 | . . . . . . . . 9 |
19 | 18 | ad3antrrr 484 | . . . . . . . 8 |
20 | sowlin 4298 | . . . . . . . 8 | |
21 | 13, 14, 17, 19, 20 | syl13anc 1230 | . . . . . . 7 |
22 | 11, 21 | mpd 13 | . . . . . 6 |
23 | 10, 22 | ecased 1339 | . . . . 5 |
24 | 23 | ex 114 | . . . 4 |
25 | 24 | rexlimdva 2583 | . . 3 |
26 | 6, 25 | syl5bi 151 | . 2 |
27 | 4, 26 | impbid 128 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 wcel 2136 wral 2444 wrex 2445 wss 3116 class class class wbr 3982 wor 4273 csup 6947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-iso 4275 df-iota 5153 df-riota 5798 df-sup 6949 |
This theorem is referenced by: suprlubex 8847 |
Copyright terms: Public domain | W3C validator |