| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > suplub2ti | Unicode version | ||
| Description: Bidirectional form of suplubti 7066. (Contributed by Jim Kingdon, 17-Jan-2022.) | 
| Ref | Expression | 
|---|---|
| supmoti.ti | 
 | 
| supclti.2 | 
 | 
| suplub2ti.or | 
 | 
| suplub2ti.3 | 
 | 
| Ref | Expression | 
|---|---|
| suplub2ti | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | supmoti.ti | 
. . . 4
 | |
| 2 | supclti.2 | 
. . . 4
 | |
| 3 | 1, 2 | suplubti 7066 | 
. . 3
 | 
| 4 | 3 | expdimp 259 | 
. 2
 | 
| 5 | breq2 4037 | 
. . . 4
 | |
| 6 | 5 | cbvrexv 2730 | 
. . 3
 | 
| 7 | simplll 533 | 
. . . . . . 7
 | |
| 8 | simplr 528 | 
. . . . . . 7
 | |
| 9 | 1, 2 | supubti 7065 | 
. . . . . . 7
 | 
| 10 | 7, 8, 9 | sylc 62 | 
. . . . . 6
 | 
| 11 | simpr 110 | 
. . . . . . 7
 | |
| 12 | suplub2ti.or | 
. . . . . . . . 9
 | |
| 13 | 12 | ad3antrrr 492 | 
. . . . . . . 8
 | 
| 14 | simpllr 534 | 
. . . . . . . 8
 | |
| 15 | suplub2ti.3 | 
. . . . . . . . . 10
 | |
| 16 | 15 | ad3antrrr 492 | 
. . . . . . . . 9
 | 
| 17 | 16, 8 | sseldd 3184 | 
. . . . . . . 8
 | 
| 18 | 1, 2 | supclti 7064 | 
. . . . . . . . 9
 | 
| 19 | 18 | ad3antrrr 492 | 
. . . . . . . 8
 | 
| 20 | sowlin 4355 | 
. . . . . . . 8
 | |
| 21 | 13, 14, 17, 19, 20 | syl13anc 1251 | 
. . . . . . 7
 | 
| 22 | 11, 21 | mpd 13 | 
. . . . . 6
 | 
| 23 | 10, 22 | ecased 1360 | 
. . . . 5
 | 
| 24 | 23 | ex 115 | 
. . . 4
 | 
| 25 | 24 | rexlimdva 2614 | 
. . 3
 | 
| 26 | 6, 25 | biimtrid 152 | 
. 2
 | 
| 27 | 4, 26 | impbid 129 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iso 4332 df-iota 5219 df-riota 5877 df-sup 7050 | 
| This theorem is referenced by: suprlubex 8979 | 
| Copyright terms: Public domain | W3C validator |