| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > suplub2ti | Unicode version | ||
| Description: Bidirectional form of suplubti 7102. (Contributed by Jim Kingdon, 17-Jan-2022.) |
| Ref | Expression |
|---|---|
| supmoti.ti |
|
| supclti.2 |
|
| suplub2ti.or |
|
| suplub2ti.3 |
|
| Ref | Expression |
|---|---|
| suplub2ti |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supmoti.ti |
. . . 4
| |
| 2 | supclti.2 |
. . . 4
| |
| 3 | 1, 2 | suplubti 7102 |
. . 3
|
| 4 | 3 | expdimp 259 |
. 2
|
| 5 | breq2 4048 |
. . . 4
| |
| 6 | 5 | cbvrexv 2739 |
. . 3
|
| 7 | simplll 533 |
. . . . . . 7
| |
| 8 | simplr 528 |
. . . . . . 7
| |
| 9 | 1, 2 | supubti 7101 |
. . . . . . 7
|
| 10 | 7, 8, 9 | sylc 62 |
. . . . . 6
|
| 11 | simpr 110 |
. . . . . . 7
| |
| 12 | suplub2ti.or |
. . . . . . . . 9
| |
| 13 | 12 | ad3antrrr 492 |
. . . . . . . 8
|
| 14 | simpllr 534 |
. . . . . . . 8
| |
| 15 | suplub2ti.3 |
. . . . . . . . . 10
| |
| 16 | 15 | ad3antrrr 492 |
. . . . . . . . 9
|
| 17 | 16, 8 | sseldd 3194 |
. . . . . . . 8
|
| 18 | 1, 2 | supclti 7100 |
. . . . . . . . 9
|
| 19 | 18 | ad3antrrr 492 |
. . . . . . . 8
|
| 20 | sowlin 4367 |
. . . . . . . 8
| |
| 21 | 13, 14, 17, 19, 20 | syl13anc 1252 |
. . . . . . 7
|
| 22 | 11, 21 | mpd 13 |
. . . . . 6
|
| 23 | 10, 22 | ecased 1362 |
. . . . 5
|
| 24 | 23 | ex 115 |
. . . 4
|
| 25 | 24 | rexlimdva 2623 |
. . 3
|
| 26 | 6, 25 | biimtrid 152 |
. 2
|
| 27 | 4, 26 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-iso 4344 df-iota 5232 df-riota 5899 df-sup 7086 |
| This theorem is referenced by: suprlubex 9025 |
| Copyright terms: Public domain | W3C validator |