Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > suplub2ti | Unicode version |
Description: Bidirectional form of suplubti 6989. (Contributed by Jim Kingdon, 17-Jan-2022.) |
Ref | Expression |
---|---|
supmoti.ti | |
supclti.2 | |
suplub2ti.or | |
suplub2ti.3 |
Ref | Expression |
---|---|
suplub2ti |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supmoti.ti | . . . 4 | |
2 | supclti.2 | . . . 4 | |
3 | 1, 2 | suplubti 6989 | . . 3 |
4 | 3 | expdimp 259 | . 2 |
5 | breq2 4002 | . . . 4 | |
6 | 5 | cbvrexv 2702 | . . 3 |
7 | simplll 533 | . . . . . . 7 | |
8 | simplr 528 | . . . . . . 7 | |
9 | 1, 2 | supubti 6988 | . . . . . . 7 |
10 | 7, 8, 9 | sylc 62 | . . . . . 6 |
11 | simpr 110 | . . . . . . 7 | |
12 | suplub2ti.or | . . . . . . . . 9 | |
13 | 12 | ad3antrrr 492 | . . . . . . . 8 |
14 | simpllr 534 | . . . . . . . 8 | |
15 | suplub2ti.3 | . . . . . . . . . 10 | |
16 | 15 | ad3antrrr 492 | . . . . . . . . 9 |
17 | 16, 8 | sseldd 3154 | . . . . . . . 8 |
18 | 1, 2 | supclti 6987 | . . . . . . . . 9 |
19 | 18 | ad3antrrr 492 | . . . . . . . 8 |
20 | sowlin 4314 | . . . . . . . 8 | |
21 | 13, 14, 17, 19, 20 | syl13anc 1240 | . . . . . . 7 |
22 | 11, 21 | mpd 13 | . . . . . 6 |
23 | 10, 22 | ecased 1349 | . . . . 5 |
24 | 23 | ex 115 | . . . 4 |
25 | 24 | rexlimdva 2592 | . . 3 |
26 | 6, 25 | biimtrid 152 | . 2 |
27 | 4, 26 | impbid 129 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 104 wb 105 wo 708 wcel 2146 wral 2453 wrex 2454 wss 3127 class class class wbr 3998 wor 4289 csup 6971 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-un 3131 df-in 3133 df-ss 3140 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-iso 4291 df-iota 5170 df-riota 5821 df-sup 6973 |
This theorem is referenced by: suprlubex 8882 |
Copyright terms: Public domain | W3C validator |