ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ocnvfvb Unicode version

Theorem f1ocnvfvb 5823
Description: Relationship between the value of a one-to-one onto function and the value of its converse. (Contributed by NM, 20-May-2004.)
Assertion
Ref Expression
f1ocnvfvb  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  A  /\  D  e.  B )  ->  ( ( F `  C )  =  D  <-> 
( `' F `  D )  =  C ) )

Proof of Theorem f1ocnvfvb
StepHypRef Expression
1 f1ocnvfv 5822 . . 3  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  A )  ->  ( ( F `  C )  =  D  ->  ( `' F `  D )  =  C ) )
213adant3 1019 . 2  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  A  /\  D  e.  B )  ->  ( ( F `  C )  =  D  ->  ( `' F `  D )  =  C ) )
3 fveq2 5554 . . . . 5  |-  ( C  =  ( `' F `  D )  ->  ( F `  C )  =  ( F `  ( `' F `  D ) ) )
43eqcoms 2196 . . . 4  |-  ( ( `' F `  D )  =  C  ->  ( F `  C )  =  ( F `  ( `' F `  D ) ) )
5 f1ocnvfv2 5821 . . . . 5  |-  ( ( F : A -1-1-onto-> B  /\  D  e.  B )  ->  ( F `  ( `' F `  D ) )  =  D )
65eqeq2d 2205 . . . 4  |-  ( ( F : A -1-1-onto-> B  /\  D  e.  B )  ->  ( ( F `  C )  =  ( F `  ( `' F `  D ) )  <->  ( F `  C )  =  D ) )
74, 6imbitrid 154 . . 3  |-  ( ( F : A -1-1-onto-> B  /\  D  e.  B )  ->  ( ( `' F `  D )  =  C  ->  ( F `  C )  =  D ) )
873adant2 1018 . 2  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  A  /\  D  e.  B )  ->  ( ( `' F `  D )  =  C  ->  ( F `  C )  =  D ) )
92, 8impbid 129 1  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  A  /\  D  e.  B )  ->  ( ( F `  C )  =  D  <-> 
( `' F `  D )  =  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   `'ccnv 4658   -1-1-onto->wf1o 5253   ` cfv 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262
This theorem is referenced by:  f1ofveu  5906  f1ocnvfv3  5907  seq3f1olemstep  10585  1arith2  12506  ennnfonelem1  12564  txhmeo  14487
  Copyright terms: Public domain W3C validator