ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmbr2 Unicode version

Theorem lmbr2 14191
Description: Express the binary relation "sequence  F converges to point  P " in a metric space using an arbitrary upper set of integers. (Contributed by Mario Carneiro, 14-Nov-2013.)
Hypotheses
Ref Expression
lmbr.2  |-  ( ph  ->  J  e.  (TopOn `  X ) )
lmbr2.4  |-  Z  =  ( ZZ>= `  M )
lmbr2.5  |-  ( ph  ->  M  e.  ZZ )
Assertion
Ref Expression
lmbr2  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) ) ) )
Distinct variable groups:    j, k, u, F    j, J, k, u    ph, j, k, u   
j, Z, k, u   
j, M    P, j,
k, u    j, X, k, u
Allowed substitution hints:    M( u, k)

Proof of Theorem lmbr2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 lmbr.2 . . 3  |-  ( ph  ->  J  e.  (TopOn `  X ) )
21lmbr 14190 . 2  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. z  e.  ran  ZZ>= ( F  |`  z ) : z --> u ) ) ) )
3 uzf 9562 . . . . . . . 8  |-  ZZ>= : ZZ --> ~P ZZ
4 ffn 5384 . . . . . . . 8  |-  ( ZZ>= : ZZ --> ~P ZZ  ->  ZZ>=  Fn  ZZ )
5 reseq2 4920 . . . . . . . . . 10  |-  ( z  =  ( ZZ>= `  j
)  ->  ( F  |`  z )  =  ( F  |`  ( ZZ>= `  j ) ) )
6 id 19 . . . . . . . . . 10  |-  ( z  =  ( ZZ>= `  j
)  ->  z  =  ( ZZ>= `  j )
)
75, 6feq12d 5374 . . . . . . . . 9  |-  ( z  =  ( ZZ>= `  j
)  ->  ( ( F  |`  z ) : z --> u  <->  ( F  |`  ( ZZ>= `  j )
) : ( ZZ>= `  j ) --> u ) )
87rexrn 5674 . . . . . . . 8  |-  ( ZZ>=  Fn  ZZ  ->  ( E. z  e.  ran  ZZ>= ( F  |`  z ) : z --> u  <->  E. j  e.  ZZ  ( F  |`  ( ZZ>= `  j ) ) : ( ZZ>= `  j ) --> u ) )
93, 4, 8mp2b 8 . . . . . . 7  |-  ( E. z  e.  ran  ZZ>= ( F  |`  z ) : z --> u  <->  E. j  e.  ZZ  ( F  |`  ( ZZ>= `  j )
) : ( ZZ>= `  j ) --> u )
10 pmfun 6695 . . . . . . . . . . 11  |-  ( F  e.  ( X  ^pm  CC )  ->  Fun  F )
1110ad2antrl 490 . . . . . . . . . 10  |-  ( (
ph  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
) )  ->  Fun  F )
12 ffvresb 5700 . . . . . . . . . 10  |-  ( Fun 
F  ->  ( ( F  |`  ( ZZ>= `  j
) ) : (
ZZ>= `  j ) --> u  <->  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) )
1311, 12syl 14 . . . . . . . . 9  |-  ( (
ph  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
) )  ->  (
( F  |`  ( ZZ>=
`  j ) ) : ( ZZ>= `  j
) --> u  <->  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  u
) ) )
1413rexbidv 2491 . . . . . . . 8  |-  ( (
ph  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
) )  ->  ( E. j  e.  ZZ  ( F  |`  ( ZZ>= `  j ) ) : ( ZZ>= `  j ) --> u 
<->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  u ) ) )
15 lmbr2.5 . . . . . . . . . 10  |-  ( ph  ->  M  e.  ZZ )
1615adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
) )  ->  M  e.  ZZ )
17 lmbr2.4 . . . . . . . . . 10  |-  Z  =  ( ZZ>= `  M )
1817rexuz3 11034 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  u ) ) )
1916, 18syl 14 . . . . . . . 8  |-  ( (
ph  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
) )  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  u ) ) )
2014, 19bitr4d 191 . . . . . . 7  |-  ( (
ph  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
) )  ->  ( E. j  e.  ZZ  ( F  |`  ( ZZ>= `  j ) ) : ( ZZ>= `  j ) --> u 
<->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) )
219, 20bitrid 192 . . . . . 6  |-  ( (
ph  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
) )  ->  ( E. z  e.  ran  ZZ>= ( F  |`  z ) : z --> u  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  u
) ) )
2221imbi2d 230 . . . . 5  |-  ( (
ph  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
) )  ->  (
( P  e.  u  ->  E. z  e.  ran  ZZ>= ( F  |`  z ) : z --> u )  <-> 
( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) ) )
2322ralbidv 2490 . . . 4  |-  ( (
ph  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
) )  ->  ( A. u  e.  J  ( P  e.  u  ->  E. z  e.  ran  ZZ>= ( F  |`  z ) : z --> u )  <->  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) ) )
2423pm5.32da 452 . . 3  |-  ( ph  ->  ( ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X )  /\  A. u  e.  J  ( P  e.  u  ->  E. z  e.  ran  ZZ>= ( F  |`  z ) : z --> u ) )  <->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X )  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  u ) ) ) ) )
25 df-3an 982 . . 3  |-  ( ( F  e.  ( X 
^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. z  e.  ran  ZZ>= ( F  |`  z ) : z --> u ) )  <->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X )  /\  A. u  e.  J  ( P  e.  u  ->  E. z  e.  ran  ZZ>= ( F  |`  z ) : z --> u ) ) )
26 df-3an 982 . . 3  |-  ( ( F  e.  ( X 
^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  u
) ) )  <->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X )  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  u ) ) ) )
2724, 25, 263bitr4g 223 . 2  |-  ( ph  ->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. z  e.  ran  ZZ>= ( F  |`  z ) : z --> u ) )  <->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) ) ) )
282, 27bitrd 188 1  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2160   A.wral 2468   E.wrex 2469   ~Pcpw 3590   class class class wbr 4018   dom cdm 4644   ran crn 4645    |` cres 4646   Fun wfun 5229    Fn wfn 5230   -->wf 5231   ` cfv 5235  (class class class)co 5897    ^pm cpm 6676   CCcc 7840   ZZcz 9284   ZZ>=cuz 9559  TopOnctopon 13987   ~~> tclm 14164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-addcom 7942  ax-addass 7944  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-0id 7950  ax-rnegex 7951  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-pm 6678  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-inn 8951  df-n0 9208  df-z 9285  df-uz 9560  df-top 13975  df-topon 13988  df-lm 14167
This theorem is referenced by:  lmbrf  14192  lmcvg  14194  lmres  14225  lmtopcnp  14227
  Copyright terms: Public domain W3C validator