ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmbr2 Unicode version

Theorem lmbr2 12967
Description: Express the binary relation "sequence  F converges to point  P " in a metric space using an arbitrary upper set of integers. (Contributed by Mario Carneiro, 14-Nov-2013.)
Hypotheses
Ref Expression
lmbr.2  |-  ( ph  ->  J  e.  (TopOn `  X ) )
lmbr2.4  |-  Z  =  ( ZZ>= `  M )
lmbr2.5  |-  ( ph  ->  M  e.  ZZ )
Assertion
Ref Expression
lmbr2  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) ) ) )
Distinct variable groups:    j, k, u, F    j, J, k, u    ph, j, k, u   
j, Z, k, u   
j, M    P, j,
k, u    j, X, k, u
Allowed substitution hints:    M( u, k)

Proof of Theorem lmbr2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 lmbr.2 . . 3  |-  ( ph  ->  J  e.  (TopOn `  X ) )
21lmbr 12966 . 2  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. z  e.  ran  ZZ>= ( F  |`  z ) : z --> u ) ) ) )
3 uzf 9477 . . . . . . . 8  |-  ZZ>= : ZZ --> ~P ZZ
4 ffn 5345 . . . . . . . 8  |-  ( ZZ>= : ZZ --> ~P ZZ  ->  ZZ>=  Fn  ZZ )
5 reseq2 4884 . . . . . . . . . 10  |-  ( z  =  ( ZZ>= `  j
)  ->  ( F  |`  z )  =  ( F  |`  ( ZZ>= `  j ) ) )
6 id 19 . . . . . . . . . 10  |-  ( z  =  ( ZZ>= `  j
)  ->  z  =  ( ZZ>= `  j )
)
75, 6feq12d 5335 . . . . . . . . 9  |-  ( z  =  ( ZZ>= `  j
)  ->  ( ( F  |`  z ) : z --> u  <->  ( F  |`  ( ZZ>= `  j )
) : ( ZZ>= `  j ) --> u ) )
87rexrn 5630 . . . . . . . 8  |-  ( ZZ>=  Fn  ZZ  ->  ( E. z  e.  ran  ZZ>= ( F  |`  z ) : z --> u  <->  E. j  e.  ZZ  ( F  |`  ( ZZ>= `  j ) ) : ( ZZ>= `  j ) --> u ) )
93, 4, 8mp2b 8 . . . . . . 7  |-  ( E. z  e.  ran  ZZ>= ( F  |`  z ) : z --> u  <->  E. j  e.  ZZ  ( F  |`  ( ZZ>= `  j )
) : ( ZZ>= `  j ) --> u )
10 pmfun 6642 . . . . . . . . . . 11  |-  ( F  e.  ( X  ^pm  CC )  ->  Fun  F )
1110ad2antrl 487 . . . . . . . . . 10  |-  ( (
ph  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
) )  ->  Fun  F )
12 ffvresb 5656 . . . . . . . . . 10  |-  ( Fun 
F  ->  ( ( F  |`  ( ZZ>= `  j
) ) : (
ZZ>= `  j ) --> u  <->  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) )
1311, 12syl 14 . . . . . . . . 9  |-  ( (
ph  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
) )  ->  (
( F  |`  ( ZZ>=
`  j ) ) : ( ZZ>= `  j
) --> u  <->  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  u
) ) )
1413rexbidv 2471 . . . . . . . 8  |-  ( (
ph  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
) )  ->  ( E. j  e.  ZZ  ( F  |`  ( ZZ>= `  j ) ) : ( ZZ>= `  j ) --> u 
<->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  u ) ) )
15 lmbr2.5 . . . . . . . . . 10  |-  ( ph  ->  M  e.  ZZ )
1615adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
) )  ->  M  e.  ZZ )
17 lmbr2.4 . . . . . . . . . 10  |-  Z  =  ( ZZ>= `  M )
1817rexuz3 10941 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  u ) ) )
1916, 18syl 14 . . . . . . . 8  |-  ( (
ph  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
) )  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  u ) ) )
2014, 19bitr4d 190 . . . . . . 7  |-  ( (
ph  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
) )  ->  ( E. j  e.  ZZ  ( F  |`  ( ZZ>= `  j ) ) : ( ZZ>= `  j ) --> u 
<->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) )
219, 20syl5bb 191 . . . . . 6  |-  ( (
ph  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
) )  ->  ( E. z  e.  ran  ZZ>= ( F  |`  z ) : z --> u  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  u
) ) )
2221imbi2d 229 . . . . 5  |-  ( (
ph  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
) )  ->  (
( P  e.  u  ->  E. z  e.  ran  ZZ>= ( F  |`  z ) : z --> u )  <-> 
( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) ) )
2322ralbidv 2470 . . . 4  |-  ( (
ph  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
) )  ->  ( A. u  e.  J  ( P  e.  u  ->  E. z  e.  ran  ZZ>= ( F  |`  z ) : z --> u )  <->  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) ) )
2423pm5.32da 449 . . 3  |-  ( ph  ->  ( ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X )  /\  A. u  e.  J  ( P  e.  u  ->  E. z  e.  ran  ZZ>= ( F  |`  z ) : z --> u ) )  <->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X )  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  u ) ) ) ) )
25 df-3an 975 . . 3  |-  ( ( F  e.  ( X 
^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. z  e.  ran  ZZ>= ( F  |`  z ) : z --> u ) )  <->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X )  /\  A. u  e.  J  ( P  e.  u  ->  E. z  e.  ran  ZZ>= ( F  |`  z ) : z --> u ) ) )
26 df-3an 975 . . 3  |-  ( ( F  e.  ( X 
^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  u
) ) )  <->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X )  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  u ) ) ) )
2724, 25, 263bitr4g 222 . 2  |-  ( ph  ->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. z  e.  ran  ZZ>= ( F  |`  z ) : z --> u ) )  <->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) ) ) )
282, 27bitrd 187 1  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348    e. wcel 2141   A.wral 2448   E.wrex 2449   ~Pcpw 3564   class class class wbr 3987   dom cdm 4609   ran crn 4610    |` cres 4611   Fun wfun 5190    Fn wfn 5191   -->wf 5192   ` cfv 5196  (class class class)co 5850    ^pm cpm 6623   CCcc 7759   ZZcz 9199   ZZ>=cuz 9474  TopOnctopon 12761   ~~> tclm 12940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-cnex 7852  ax-resscn 7853  ax-1cn 7854  ax-1re 7855  ax-icn 7856  ax-addcl 7857  ax-addrcl 7858  ax-mulcl 7859  ax-addcom 7861  ax-addass 7863  ax-distr 7865  ax-i2m1 7866  ax-0lt1 7867  ax-0id 7869  ax-rnegex 7870  ax-cnre 7872  ax-pre-ltirr 7873  ax-pre-ltwlin 7874  ax-pre-lttrn 7875  ax-pre-apti 7876  ax-pre-ltadd 7877
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-fv 5204  df-riota 5806  df-ov 5853  df-oprab 5854  df-mpo 5855  df-1st 6116  df-2nd 6117  df-pm 6625  df-pnf 7943  df-mnf 7944  df-xr 7945  df-ltxr 7946  df-le 7947  df-sub 8079  df-neg 8080  df-inn 8866  df-n0 9123  df-z 9200  df-uz 9475  df-top 12749  df-topon 12762  df-lm 12943
This theorem is referenced by:  lmbrf  12968  lmcvg  12970  lmres  13001  lmtopcnp  13003
  Copyright terms: Public domain W3C validator