Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > limccl | Unicode version |
Description: Closure of the limit operator. (Contributed by Mario Carneiro, 25-Dec-2016.) |
Ref | Expression |
---|---|
limccl | lim |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . . 4 lim lim | |
2 | df-limced 13265 | . . . . . 6 lim # | |
3 | 2 | elmpocl1 6037 | . . . . 5 lim |
4 | limcrcl 13267 | . . . . . 6 lim | |
5 | 4 | simp3d 1001 | . . . . 5 lim |
6 | cnex 7877 | . . . . . . 7 | |
7 | 6 | rabex 4126 | . . . . . 6 # |
8 | 7 | a1i 9 | . . . . 5 lim # |
9 | simpl 108 | . . . . . . . . . 10 | |
10 | 9 | dmeqd 4806 | . . . . . . . . . 10 |
11 | 9, 10 | feq12d 5327 | . . . . . . . . 9 |
12 | 10 | sseq1d 3171 | . . . . . . . . 9 |
13 | 11, 12 | anbi12d 465 | . . . . . . . 8 |
14 | simpr 109 | . . . . . . . . . 10 | |
15 | 14 | eleq1d 2235 | . . . . . . . . 9 |
16 | 14 | breq2d 3994 | . . . . . . . . . . . . . 14 # # |
17 | 14 | oveq2d 5858 | . . . . . . . . . . . . . . . 16 |
18 | 17 | fveq2d 5490 | . . . . . . . . . . . . . . 15 |
19 | 18 | breq1d 3992 | . . . . . . . . . . . . . 14 |
20 | 16, 19 | anbi12d 465 | . . . . . . . . . . . . 13 # # |
21 | 9 | fveq1d 5488 | . . . . . . . . . . . . . . 15 |
22 | 21 | fvoveq1d 5864 | . . . . . . . . . . . . . 14 |
23 | 22 | breq1d 3992 | . . . . . . . . . . . . 13 |
24 | 20, 23 | imbi12d 233 | . . . . . . . . . . . 12 # # |
25 | 10, 24 | raleqbidv 2673 | . . . . . . . . . . 11 # # |
26 | 25 | rexbidv 2467 | . . . . . . . . . 10 # # |
27 | 26 | ralbidv 2466 | . . . . . . . . 9 # # |
28 | 15, 27 | anbi12d 465 | . . . . . . . 8 # # |
29 | 13, 28 | anbi12d 465 | . . . . . . 7 # # |
30 | 29 | rabbidv 2715 | . . . . . 6 # # |
31 | 30, 2 | ovmpoga 5971 | . . . . 5 # lim # |
32 | 3, 5, 8, 31 | syl3anc 1228 | . . . 4 lim lim # |
33 | 1, 32 | eleqtrd 2245 | . . 3 lim # |
34 | elrabi 2879 | . . 3 # | |
35 | 33, 34 | syl 14 | . 2 lim |
36 | 35 | ssriv 3146 | 1 lim |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 wral 2444 wrex 2445 crab 2448 cvv 2726 wss 3116 class class class wbr 3982 cdm 4604 wf 5184 cfv 5188 (class class class)co 5842 cpm 6615 cc 7751 clt 7933 cmin 8069 # cap 8479 crp 9589 cabs 10939 lim climc 13263 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pm 6617 df-limced 13265 |
This theorem is referenced by: reldvg 13288 dvfvalap 13290 dvcl 13292 |
Copyright terms: Public domain | W3C validator |