ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limccl Unicode version

Theorem limccl 13169
Description: Closure of the limit operator. (Contributed by Mario Carneiro, 25-Dec-2016.)
Assertion
Ref Expression
limccl  |-  ( F lim
CC  B )  C_  CC

Proof of Theorem limccl
Dummy variables  d  e  f  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . . . 4  |-  ( w  e.  ( F lim CC  B )  ->  w  e.  ( F lim CC  B
) )
2 df-limced 13166 . . . . . 6  |- lim CC  =  ( f  e.  ( CC  ^pm  CC ) ,  x  e.  CC  |->  { y  e.  CC  |  ( ( f : dom  f --> CC 
/\  dom  f  C_  CC )  /\  (
x  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e. 
dom  f ( ( z #  x  /\  ( abs `  ( z  -  x ) )  < 
d )  ->  ( abs `  ( ( f `
 z )  -  y ) )  < 
e ) ) ) } )
32elmpocl1 6031 . . . . 5  |-  ( w  e.  ( F lim CC  B )  ->  F  e.  ( CC  ^pm  CC ) )
4 limcrcl 13168 . . . . . 6  |-  ( w  e.  ( F lim CC  B )  ->  ( F : dom  F --> CC  /\  dom  F  C_  CC  /\  B  e.  CC ) )
54simp3d 1000 . . . . 5  |-  ( w  e.  ( F lim CC  B )  ->  B  e.  CC )
6 cnex 7868 . . . . . . 7  |-  CC  e.  _V
76rabex 4120 . . . . . 6  |-  { y  e.  CC  |  ( ( F : dom  F --> CC  /\  dom  F  C_  CC )  /\  ( B  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e. 
dom  F ( ( z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  y ) )  < 
e ) ) ) }  e.  _V
87a1i 9 . . . . 5  |-  ( w  e.  ( F lim CC  B )  ->  { y  e.  CC  |  ( ( F : dom  F --> CC  /\  dom  F  C_  CC )  /\  ( B  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e. 
dom  F ( ( z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  y ) )  < 
e ) ) ) }  e.  _V )
9 simpl 108 . . . . . . . . . 10  |-  ( ( f  =  F  /\  x  =  B )  ->  f  =  F )
109dmeqd 4800 . . . . . . . . . 10  |-  ( ( f  =  F  /\  x  =  B )  ->  dom  f  =  dom  F )
119, 10feq12d 5321 . . . . . . . . 9  |-  ( ( f  =  F  /\  x  =  B )  ->  ( f : dom  f
--> CC  <->  F : dom  F --> CC ) )
1210sseq1d 3166 . . . . . . . . 9  |-  ( ( f  =  F  /\  x  =  B )  ->  ( dom  f  C_  CC 
<->  dom  F  C_  CC ) )
1311, 12anbi12d 465 . . . . . . . 8  |-  ( ( f  =  F  /\  x  =  B )  ->  ( ( f : dom  f --> CC  /\  dom  f  C_  CC )  <-> 
( F : dom  F --> CC  /\  dom  F  C_  CC ) ) )
14 simpr 109 . . . . . . . . . 10  |-  ( ( f  =  F  /\  x  =  B )  ->  x  =  B )
1514eleq1d 2233 . . . . . . . . 9  |-  ( ( f  =  F  /\  x  =  B )  ->  ( x  e.  CC  <->  B  e.  CC ) )
1614breq2d 3988 . . . . . . . . . . . . . 14  |-  ( ( f  =  F  /\  x  =  B )  ->  ( z #  x  <->  z #  B
) )
1714oveq2d 5852 . . . . . . . . . . . . . . . 16  |-  ( ( f  =  F  /\  x  =  B )  ->  ( z  -  x
)  =  ( z  -  B ) )
1817fveq2d 5484 . . . . . . . . . . . . . . 15  |-  ( ( f  =  F  /\  x  =  B )  ->  ( abs `  (
z  -  x ) )  =  ( abs `  ( z  -  B
) ) )
1918breq1d 3986 . . . . . . . . . . . . . 14  |-  ( ( f  =  F  /\  x  =  B )  ->  ( ( abs `  (
z  -  x ) )  <  d  <->  ( abs `  ( z  -  B
) )  <  d
) )
2016, 19anbi12d 465 . . . . . . . . . . . . 13  |-  ( ( f  =  F  /\  x  =  B )  ->  ( ( z #  x  /\  ( abs `  (
z  -  x ) )  <  d )  <-> 
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d ) ) )
219fveq1d 5482 . . . . . . . . . . . . . . 15  |-  ( ( f  =  F  /\  x  =  B )  ->  ( f `  z
)  =  ( F `
 z ) )
2221fvoveq1d 5858 . . . . . . . . . . . . . 14  |-  ( ( f  =  F  /\  x  =  B )  ->  ( abs `  (
( f `  z
)  -  y ) )  =  ( abs `  ( ( F `  z )  -  y
) ) )
2322breq1d 3986 . . . . . . . . . . . . 13  |-  ( ( f  =  F  /\  x  =  B )  ->  ( ( abs `  (
( f `  z
)  -  y ) )  <  e  <->  ( abs `  ( ( F `  z )  -  y
) )  <  e
) )
2420, 23imbi12d 233 . . . . . . . . . . . 12  |-  ( ( f  =  F  /\  x  =  B )  ->  ( ( ( z #  x  /\  ( abs `  ( z  -  x
) )  <  d
)  ->  ( abs `  ( ( f `  z )  -  y
) )  <  e
)  <->  ( ( z #  B  /\  ( abs `  ( z  -  B
) )  <  d
)  ->  ( abs `  ( ( F `  z )  -  y
) )  <  e
) ) )
2510, 24raleqbidv 2671 . . . . . . . . . . 11  |-  ( ( f  =  F  /\  x  =  B )  ->  ( A. z  e. 
dom  f ( ( z #  x  /\  ( abs `  ( z  -  x ) )  < 
d )  ->  ( abs `  ( ( f `
 z )  -  y ) )  < 
e )  <->  A. z  e.  dom  F ( ( z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  y ) )  < 
e ) ) )
2625rexbidv 2465 . . . . . . . . . 10  |-  ( ( f  =  F  /\  x  =  B )  ->  ( E. d  e.  RR+  A. z  e.  dom  f ( ( z #  x  /\  ( abs `  ( z  -  x
) )  <  d
)  ->  ( abs `  ( ( f `  z )  -  y
) )  <  e
)  <->  E. d  e.  RR+  A. z  e.  dom  F
( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( F `  z
)  -  y ) )  <  e ) ) )
2726ralbidv 2464 . . . . . . . . 9  |-  ( ( f  =  F  /\  x  =  B )  ->  ( A. e  e.  RR+  E. d  e.  RR+  A. z  e.  dom  f
( ( z #  x  /\  ( abs `  (
z  -  x ) )  <  d )  ->  ( abs `  (
( f `  z
)  -  y ) )  <  e )  <->  A. e  e.  RR+  E. d  e.  RR+  A. z  e. 
dom  F ( ( z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  y ) )  < 
e ) ) )
2815, 27anbi12d 465 . . . . . . . 8  |-  ( ( f  =  F  /\  x  =  B )  ->  ( ( x  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  dom  f ( ( z #  x  /\  ( abs `  ( z  -  x
) )  <  d
)  ->  ( abs `  ( ( f `  z )  -  y
) )  <  e
) )  <->  ( B  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  dom  F ( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( F `  z
)  -  y ) )  <  e ) ) ) )
2913, 28anbi12d 465 . . . . . . 7  |-  ( ( f  =  F  /\  x  =  B )  ->  ( ( ( f : dom  f --> CC 
/\  dom  f  C_  CC )  /\  (
x  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e. 
dom  f ( ( z #  x  /\  ( abs `  ( z  -  x ) )  < 
d )  ->  ( abs `  ( ( f `
 z )  -  y ) )  < 
e ) ) )  <-> 
( ( F : dom  F --> CC  /\  dom  F 
C_  CC )  /\  ( B  e.  CC  /\ 
A. e  e.  RR+  E. d  e.  RR+  A. z  e.  dom  F ( ( z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  y ) )  < 
e ) ) ) ) )
3029rabbidv 2710 . . . . . 6  |-  ( ( f  =  F  /\  x  =  B )  ->  { y  e.  CC  |  ( ( f : dom  f --> CC 
/\  dom  f  C_  CC )  /\  (
x  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e. 
dom  f ( ( z #  x  /\  ( abs `  ( z  -  x ) )  < 
d )  ->  ( abs `  ( ( f `
 z )  -  y ) )  < 
e ) ) ) }  =  { y  e.  CC  |  ( ( F : dom  F --> CC  /\  dom  F  C_  CC )  /\  ( B  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e. 
dom  F ( ( z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  y ) )  < 
e ) ) ) } )
3130, 2ovmpoga 5962 . . . . 5  |-  ( ( F  e.  ( CC 
^pm  CC )  /\  B  e.  CC  /\  { y  e.  CC  |  ( ( F : dom  F --> CC  /\  dom  F  C_  CC )  /\  ( B  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e. 
dom  F ( ( z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  y ) )  < 
e ) ) ) }  e.  _V )  ->  ( F lim CC  B
)  =  { y  e.  CC  |  ( ( F : dom  F --> CC  /\  dom  F  C_  CC )  /\  ( B  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e. 
dom  F ( ( z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  y ) )  < 
e ) ) ) } )
323, 5, 8, 31syl3anc 1227 . . . 4  |-  ( w  e.  ( F lim CC  B )  ->  ( F lim CC  B )  =  { y  e.  CC  |  ( ( F : dom  F --> CC  /\  dom  F  C_  CC )  /\  ( B  e.  CC  /\ 
A. e  e.  RR+  E. d  e.  RR+  A. z  e.  dom  F ( ( z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  y ) )  < 
e ) ) ) } )
331, 32eleqtrd 2243 . . 3  |-  ( w  e.  ( F lim CC  B )  ->  w  e.  { y  e.  CC  |  ( ( F : dom  F --> CC  /\  dom  F  C_  CC )  /\  ( B  e.  CC  /\ 
A. e  e.  RR+  E. d  e.  RR+  A. z  e.  dom  F ( ( z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  y ) )  < 
e ) ) ) } )
34 elrabi 2874 . . 3  |-  ( w  e.  { y  e.  CC  |  ( ( F : dom  F --> CC  /\  dom  F  C_  CC )  /\  ( B  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e. 
dom  F ( ( z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  y ) )  < 
e ) ) ) }  ->  w  e.  CC )
3533, 34syl 14 . 2  |-  ( w  e.  ( F lim CC  B )  ->  w  e.  CC )
3635ssriv 3141 1  |-  ( F lim
CC  B )  C_  CC
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1342    e. wcel 2135   A.wral 2442   E.wrex 2443   {crab 2446   _Vcvv 2721    C_ wss 3111   class class class wbr 3976   dom cdm 4598   -->wf 5178   ` cfv 5182  (class class class)co 5836    ^pm cpm 6606   CCcc 7742    < clt 7924    - cmin 8060   # cap 8470   RR+crp 9580   abscabs 10925   lim CC climc 13164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-cnex 7835
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-rab 2451  df-v 2723  df-sbc 2947  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-br 3977  df-opab 4038  df-id 4265  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-fv 5190  df-ov 5839  df-oprab 5840  df-mpo 5841  df-pm 6608  df-limced 13166
This theorem is referenced by:  reldvg  13189  dvfvalap  13191  dvcl  13193
  Copyright terms: Public domain W3C validator