| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > limccl | Unicode version | ||
| Description: Closure of the limit operator. (Contributed by Mario Carneiro, 25-Dec-2016.) |
| Ref | Expression |
|---|---|
| limccl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. . . 4
| |
| 2 | df-limced 15203 |
. . . . . 6
| |
| 3 | 2 | elmpocl1 6155 |
. . . . 5
|
| 4 | limcrcl 15205 |
. . . . . 6
| |
| 5 | 4 | simp3d 1014 |
. . . . 5
|
| 6 | cnex 8069 |
. . . . . . 7
| |
| 7 | 6 | rabex 4196 |
. . . . . 6
|
| 8 | 7 | a1i 9 |
. . . . 5
|
| 9 | simpl 109 |
. . . . . . . . . 10
| |
| 10 | 9 | dmeqd 4889 |
. . . . . . . . . 10
|
| 11 | 9, 10 | feq12d 5425 |
. . . . . . . . 9
|
| 12 | 10 | sseq1d 3226 |
. . . . . . . . 9
|
| 13 | 11, 12 | anbi12d 473 |
. . . . . . . 8
|
| 14 | simpr 110 |
. . . . . . . . . 10
| |
| 15 | 14 | eleq1d 2275 |
. . . . . . . . 9
|
| 16 | 14 | breq2d 4063 |
. . . . . . . . . . . . . 14
|
| 17 | 14 | oveq2d 5973 |
. . . . . . . . . . . . . . . 16
|
| 18 | 17 | fveq2d 5593 |
. . . . . . . . . . . . . . 15
|
| 19 | 18 | breq1d 4061 |
. . . . . . . . . . . . . 14
|
| 20 | 16, 19 | anbi12d 473 |
. . . . . . . . . . . . 13
|
| 21 | 9 | fveq1d 5591 |
. . . . . . . . . . . . . . 15
|
| 22 | 21 | fvoveq1d 5979 |
. . . . . . . . . . . . . 14
|
| 23 | 22 | breq1d 4061 |
. . . . . . . . . . . . 13
|
| 24 | 20, 23 | imbi12d 234 |
. . . . . . . . . . . 12
|
| 25 | 10, 24 | raleqbidv 2719 |
. . . . . . . . . . 11
|
| 26 | 25 | rexbidv 2508 |
. . . . . . . . . 10
|
| 27 | 26 | ralbidv 2507 |
. . . . . . . . 9
|
| 28 | 15, 27 | anbi12d 473 |
. . . . . . . 8
|
| 29 | 13, 28 | anbi12d 473 |
. . . . . . 7
|
| 30 | 29 | rabbidv 2762 |
. . . . . 6
|
| 31 | 30, 2 | ovmpoga 6088 |
. . . . 5
|
| 32 | 3, 5, 8, 31 | syl3anc 1250 |
. . . 4
|
| 33 | 1, 32 | eleqtrd 2285 |
. . 3
|
| 34 | elrabi 2930 |
. . 3
| |
| 35 | 33, 34 | syl 14 |
. 2
|
| 36 | 35 | ssriv 3201 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-fv 5288 df-ov 5960 df-oprab 5961 df-mpo 5962 df-pm 6751 df-limced 15203 |
| This theorem is referenced by: reldvg 15226 dvfvalap 15228 dvcl 15230 |
| Copyright terms: Public domain | W3C validator |