| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > limccl | Unicode version | ||
| Description: Closure of the limit operator. (Contributed by Mario Carneiro, 25-Dec-2016.) |
| Ref | Expression |
|---|---|
| limccl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. . . 4
| |
| 2 | df-limced 15046 |
. . . . . 6
| |
| 3 | 2 | elmpocl1 6132 |
. . . . 5
|
| 4 | limcrcl 15048 |
. . . . . 6
| |
| 5 | 4 | simp3d 1013 |
. . . . 5
|
| 6 | cnex 8031 |
. . . . . . 7
| |
| 7 | 6 | rabex 4187 |
. . . . . 6
|
| 8 | 7 | a1i 9 |
. . . . 5
|
| 9 | simpl 109 |
. . . . . . . . . 10
| |
| 10 | 9 | dmeqd 4878 |
. . . . . . . . . 10
|
| 11 | 9, 10 | feq12d 5409 |
. . . . . . . . 9
|
| 12 | 10 | sseq1d 3221 |
. . . . . . . . 9
|
| 13 | 11, 12 | anbi12d 473 |
. . . . . . . 8
|
| 14 | simpr 110 |
. . . . . . . . . 10
| |
| 15 | 14 | eleq1d 2273 |
. . . . . . . . 9
|
| 16 | 14 | breq2d 4055 |
. . . . . . . . . . . . . 14
|
| 17 | 14 | oveq2d 5950 |
. . . . . . . . . . . . . . . 16
|
| 18 | 17 | fveq2d 5574 |
. . . . . . . . . . . . . . 15
|
| 19 | 18 | breq1d 4053 |
. . . . . . . . . . . . . 14
|
| 20 | 16, 19 | anbi12d 473 |
. . . . . . . . . . . . 13
|
| 21 | 9 | fveq1d 5572 |
. . . . . . . . . . . . . . 15
|
| 22 | 21 | fvoveq1d 5956 |
. . . . . . . . . . . . . 14
|
| 23 | 22 | breq1d 4053 |
. . . . . . . . . . . . 13
|
| 24 | 20, 23 | imbi12d 234 |
. . . . . . . . . . . 12
|
| 25 | 10, 24 | raleqbidv 2717 |
. . . . . . . . . . 11
|
| 26 | 25 | rexbidv 2506 |
. . . . . . . . . 10
|
| 27 | 26 | ralbidv 2505 |
. . . . . . . . 9
|
| 28 | 15, 27 | anbi12d 473 |
. . . . . . . 8
|
| 29 | 13, 28 | anbi12d 473 |
. . . . . . 7
|
| 30 | 29 | rabbidv 2760 |
. . . . . 6
|
| 31 | 30, 2 | ovmpoga 6065 |
. . . . 5
|
| 32 | 3, 5, 8, 31 | syl3anc 1249 |
. . . 4
|
| 33 | 1, 32 | eleqtrd 2283 |
. . 3
|
| 34 | elrabi 2925 |
. . 3
| |
| 35 | 33, 34 | syl 14 |
. 2
|
| 36 | 35 | ssriv 3196 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-cnex 7998 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-fv 5276 df-ov 5937 df-oprab 5938 df-mpo 5939 df-pm 6728 df-limced 15046 |
| This theorem is referenced by: reldvg 15069 dvfvalap 15071 dvcl 15073 |
| Copyright terms: Public domain | W3C validator |