ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limccl Unicode version

Theorem limccl 14895
Description: Closure of the limit operator. (Contributed by Mario Carneiro, 25-Dec-2016.)
Assertion
Ref Expression
limccl  |-  ( F lim
CC  B )  C_  CC

Proof of Theorem limccl
Dummy variables  d  e  f  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . . . 4  |-  ( w  e.  ( F lim CC  B )  ->  w  e.  ( F lim CC  B
) )
2 df-limced 14892 . . . . . 6  |- lim CC  =  ( f  e.  ( CC  ^pm  CC ) ,  x  e.  CC  |->  { y  e.  CC  |  ( ( f : dom  f --> CC 
/\  dom  f  C_  CC )  /\  (
x  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e. 
dom  f ( ( z #  x  /\  ( abs `  ( z  -  x ) )  < 
d )  ->  ( abs `  ( ( f `
 z )  -  y ) )  < 
e ) ) ) } )
32elmpocl1 6119 . . . . 5  |-  ( w  e.  ( F lim CC  B )  ->  F  e.  ( CC  ^pm  CC ) )
4 limcrcl 14894 . . . . . 6  |-  ( w  e.  ( F lim CC  B )  ->  ( F : dom  F --> CC  /\  dom  F  C_  CC  /\  B  e.  CC ) )
54simp3d 1013 . . . . 5  |-  ( w  e.  ( F lim CC  B )  ->  B  e.  CC )
6 cnex 8003 . . . . . . 7  |-  CC  e.  _V
76rabex 4177 . . . . . 6  |-  { y  e.  CC  |  ( ( F : dom  F --> CC  /\  dom  F  C_  CC )  /\  ( B  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e. 
dom  F ( ( z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  y ) )  < 
e ) ) ) }  e.  _V
87a1i 9 . . . . 5  |-  ( w  e.  ( F lim CC  B )  ->  { y  e.  CC  |  ( ( F : dom  F --> CC  /\  dom  F  C_  CC )  /\  ( B  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e. 
dom  F ( ( z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  y ) )  < 
e ) ) ) }  e.  _V )
9 simpl 109 . . . . . . . . . 10  |-  ( ( f  =  F  /\  x  =  B )  ->  f  =  F )
109dmeqd 4868 . . . . . . . . . 10  |-  ( ( f  =  F  /\  x  =  B )  ->  dom  f  =  dom  F )
119, 10feq12d 5397 . . . . . . . . 9  |-  ( ( f  =  F  /\  x  =  B )  ->  ( f : dom  f
--> CC  <->  F : dom  F --> CC ) )
1210sseq1d 3212 . . . . . . . . 9  |-  ( ( f  =  F  /\  x  =  B )  ->  ( dom  f  C_  CC 
<->  dom  F  C_  CC ) )
1311, 12anbi12d 473 . . . . . . . 8  |-  ( ( f  =  F  /\  x  =  B )  ->  ( ( f : dom  f --> CC  /\  dom  f  C_  CC )  <-> 
( F : dom  F --> CC  /\  dom  F  C_  CC ) ) )
14 simpr 110 . . . . . . . . . 10  |-  ( ( f  =  F  /\  x  =  B )  ->  x  =  B )
1514eleq1d 2265 . . . . . . . . 9  |-  ( ( f  =  F  /\  x  =  B )  ->  ( x  e.  CC  <->  B  e.  CC ) )
1614breq2d 4045 . . . . . . . . . . . . . 14  |-  ( ( f  =  F  /\  x  =  B )  ->  ( z #  x  <->  z #  B
) )
1714oveq2d 5938 . . . . . . . . . . . . . . . 16  |-  ( ( f  =  F  /\  x  =  B )  ->  ( z  -  x
)  =  ( z  -  B ) )
1817fveq2d 5562 . . . . . . . . . . . . . . 15  |-  ( ( f  =  F  /\  x  =  B )  ->  ( abs `  (
z  -  x ) )  =  ( abs `  ( z  -  B
) ) )
1918breq1d 4043 . . . . . . . . . . . . . 14  |-  ( ( f  =  F  /\  x  =  B )  ->  ( ( abs `  (
z  -  x ) )  <  d  <->  ( abs `  ( z  -  B
) )  <  d
) )
2016, 19anbi12d 473 . . . . . . . . . . . . 13  |-  ( ( f  =  F  /\  x  =  B )  ->  ( ( z #  x  /\  ( abs `  (
z  -  x ) )  <  d )  <-> 
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d ) ) )
219fveq1d 5560 . . . . . . . . . . . . . . 15  |-  ( ( f  =  F  /\  x  =  B )  ->  ( f `  z
)  =  ( F `
 z ) )
2221fvoveq1d 5944 . . . . . . . . . . . . . 14  |-  ( ( f  =  F  /\  x  =  B )  ->  ( abs `  (
( f `  z
)  -  y ) )  =  ( abs `  ( ( F `  z )  -  y
) ) )
2322breq1d 4043 . . . . . . . . . . . . 13  |-  ( ( f  =  F  /\  x  =  B )  ->  ( ( abs `  (
( f `  z
)  -  y ) )  <  e  <->  ( abs `  ( ( F `  z )  -  y
) )  <  e
) )
2420, 23imbi12d 234 . . . . . . . . . . . 12  |-  ( ( f  =  F  /\  x  =  B )  ->  ( ( ( z #  x  /\  ( abs `  ( z  -  x
) )  <  d
)  ->  ( abs `  ( ( f `  z )  -  y
) )  <  e
)  <->  ( ( z #  B  /\  ( abs `  ( z  -  B
) )  <  d
)  ->  ( abs `  ( ( F `  z )  -  y
) )  <  e
) ) )
2510, 24raleqbidv 2709 . . . . . . . . . . 11  |-  ( ( f  =  F  /\  x  =  B )  ->  ( A. z  e. 
dom  f ( ( z #  x  /\  ( abs `  ( z  -  x ) )  < 
d )  ->  ( abs `  ( ( f `
 z )  -  y ) )  < 
e )  <->  A. z  e.  dom  F ( ( z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  y ) )  < 
e ) ) )
2625rexbidv 2498 . . . . . . . . . 10  |-  ( ( f  =  F  /\  x  =  B )  ->  ( E. d  e.  RR+  A. z  e.  dom  f ( ( z #  x  /\  ( abs `  ( z  -  x
) )  <  d
)  ->  ( abs `  ( ( f `  z )  -  y
) )  <  e
)  <->  E. d  e.  RR+  A. z  e.  dom  F
( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( F `  z
)  -  y ) )  <  e ) ) )
2726ralbidv 2497 . . . . . . . . 9  |-  ( ( f  =  F  /\  x  =  B )  ->  ( A. e  e.  RR+  E. d  e.  RR+  A. z  e.  dom  f
( ( z #  x  /\  ( abs `  (
z  -  x ) )  <  d )  ->  ( abs `  (
( f `  z
)  -  y ) )  <  e )  <->  A. e  e.  RR+  E. d  e.  RR+  A. z  e. 
dom  F ( ( z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  y ) )  < 
e ) ) )
2815, 27anbi12d 473 . . . . . . . 8  |-  ( ( f  =  F  /\  x  =  B )  ->  ( ( x  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  dom  f ( ( z #  x  /\  ( abs `  ( z  -  x
) )  <  d
)  ->  ( abs `  ( ( f `  z )  -  y
) )  <  e
) )  <->  ( B  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  dom  F ( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( F `  z
)  -  y ) )  <  e ) ) ) )
2913, 28anbi12d 473 . . . . . . 7  |-  ( ( f  =  F  /\  x  =  B )  ->  ( ( ( f : dom  f --> CC 
/\  dom  f  C_  CC )  /\  (
x  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e. 
dom  f ( ( z #  x  /\  ( abs `  ( z  -  x ) )  < 
d )  ->  ( abs `  ( ( f `
 z )  -  y ) )  < 
e ) ) )  <-> 
( ( F : dom  F --> CC  /\  dom  F 
C_  CC )  /\  ( B  e.  CC  /\ 
A. e  e.  RR+  E. d  e.  RR+  A. z  e.  dom  F ( ( z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  y ) )  < 
e ) ) ) ) )
3029rabbidv 2752 . . . . . 6  |-  ( ( f  =  F  /\  x  =  B )  ->  { y  e.  CC  |  ( ( f : dom  f --> CC 
/\  dom  f  C_  CC )  /\  (
x  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e. 
dom  f ( ( z #  x  /\  ( abs `  ( z  -  x ) )  < 
d )  ->  ( abs `  ( ( f `
 z )  -  y ) )  < 
e ) ) ) }  =  { y  e.  CC  |  ( ( F : dom  F --> CC  /\  dom  F  C_  CC )  /\  ( B  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e. 
dom  F ( ( z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  y ) )  < 
e ) ) ) } )
3130, 2ovmpoga 6052 . . . . 5  |-  ( ( F  e.  ( CC 
^pm  CC )  /\  B  e.  CC  /\  { y  e.  CC  |  ( ( F : dom  F --> CC  /\  dom  F  C_  CC )  /\  ( B  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e. 
dom  F ( ( z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  y ) )  < 
e ) ) ) }  e.  _V )  ->  ( F lim CC  B
)  =  { y  e.  CC  |  ( ( F : dom  F --> CC  /\  dom  F  C_  CC )  /\  ( B  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e. 
dom  F ( ( z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  y ) )  < 
e ) ) ) } )
323, 5, 8, 31syl3anc 1249 . . . 4  |-  ( w  e.  ( F lim CC  B )  ->  ( F lim CC  B )  =  { y  e.  CC  |  ( ( F : dom  F --> CC  /\  dom  F  C_  CC )  /\  ( B  e.  CC  /\ 
A. e  e.  RR+  E. d  e.  RR+  A. z  e.  dom  F ( ( z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  y ) )  < 
e ) ) ) } )
331, 32eleqtrd 2275 . . 3  |-  ( w  e.  ( F lim CC  B )  ->  w  e.  { y  e.  CC  |  ( ( F : dom  F --> CC  /\  dom  F  C_  CC )  /\  ( B  e.  CC  /\ 
A. e  e.  RR+  E. d  e.  RR+  A. z  e.  dom  F ( ( z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  y ) )  < 
e ) ) ) } )
34 elrabi 2917 . . 3  |-  ( w  e.  { y  e.  CC  |  ( ( F : dom  F --> CC  /\  dom  F  C_  CC )  /\  ( B  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e. 
dom  F ( ( z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  y ) )  < 
e ) ) ) }  ->  w  e.  CC )
3533, 34syl 14 . 2  |-  ( w  e.  ( F lim CC  B )  ->  w  e.  CC )
3635ssriv 3187 1  |-  ( F lim
CC  B )  C_  CC
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   A.wral 2475   E.wrex 2476   {crab 2479   _Vcvv 2763    C_ wss 3157   class class class wbr 4033   dom cdm 4663   -->wf 5254   ` cfv 5258  (class class class)co 5922    ^pm cpm 6708   CCcc 7877    < clt 8061    - cmin 8197   # cap 8608   RR+crp 9728   abscabs 11162   lim CC climc 14890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pm 6710  df-limced 14892
This theorem is referenced by:  reldvg  14915  dvfvalap  14917  dvcl  14919
  Copyright terms: Public domain W3C validator