| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > limccl | Unicode version | ||
| Description: Closure of the limit operator. (Contributed by Mario Carneiro, 25-Dec-2016.) |
| Ref | Expression |
|---|---|
| limccl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. . . 4
| |
| 2 | df-limced 15324 |
. . . . . 6
| |
| 3 | 2 | elmpocl1 6200 |
. . . . 5
|
| 4 | limcrcl 15326 |
. . . . . 6
| |
| 5 | 4 | simp3d 1035 |
. . . . 5
|
| 6 | cnex 8119 |
. . . . . . 7
| |
| 7 | 6 | rabex 4227 |
. . . . . 6
|
| 8 | 7 | a1i 9 |
. . . . 5
|
| 9 | simpl 109 |
. . . . . . . . . 10
| |
| 10 | 9 | dmeqd 4924 |
. . . . . . . . . 10
|
| 11 | 9, 10 | feq12d 5462 |
. . . . . . . . 9
|
| 12 | 10 | sseq1d 3253 |
. . . . . . . . 9
|
| 13 | 11, 12 | anbi12d 473 |
. . . . . . . 8
|
| 14 | simpr 110 |
. . . . . . . . . 10
| |
| 15 | 14 | eleq1d 2298 |
. . . . . . . . 9
|
| 16 | 14 | breq2d 4094 |
. . . . . . . . . . . . . 14
|
| 17 | 14 | oveq2d 6016 |
. . . . . . . . . . . . . . . 16
|
| 18 | 17 | fveq2d 5630 |
. . . . . . . . . . . . . . 15
|
| 19 | 18 | breq1d 4092 |
. . . . . . . . . . . . . 14
|
| 20 | 16, 19 | anbi12d 473 |
. . . . . . . . . . . . 13
|
| 21 | 9 | fveq1d 5628 |
. . . . . . . . . . . . . . 15
|
| 22 | 21 | fvoveq1d 6022 |
. . . . . . . . . . . . . 14
|
| 23 | 22 | breq1d 4092 |
. . . . . . . . . . . . 13
|
| 24 | 20, 23 | imbi12d 234 |
. . . . . . . . . . . 12
|
| 25 | 10, 24 | raleqbidv 2744 |
. . . . . . . . . . 11
|
| 26 | 25 | rexbidv 2531 |
. . . . . . . . . 10
|
| 27 | 26 | ralbidv 2530 |
. . . . . . . . 9
|
| 28 | 15, 27 | anbi12d 473 |
. . . . . . . 8
|
| 29 | 13, 28 | anbi12d 473 |
. . . . . . 7
|
| 30 | 29 | rabbidv 2788 |
. . . . . 6
|
| 31 | 30, 2 | ovmpoga 6133 |
. . . . 5
|
| 32 | 3, 5, 8, 31 | syl3anc 1271 |
. . . 4
|
| 33 | 1, 32 | eleqtrd 2308 |
. . 3
|
| 34 | elrabi 2956 |
. . 3
| |
| 35 | 33, 34 | syl 14 |
. 2
|
| 36 | 35 | ssriv 3228 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pm 6796 df-limced 15324 |
| This theorem is referenced by: reldvg 15347 dvfvalap 15349 dvcl 15351 |
| Copyright terms: Public domain | W3C validator |