Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > limccl | Unicode version |
Description: Closure of the limit operator. (Contributed by Mario Carneiro, 25-Dec-2016.) |
Ref | Expression |
---|---|
limccl | lim |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . . 4 lim lim | |
2 | df-limced 13419 | . . . . . 6 lim # | |
3 | 2 | elmpocl1 6048 | . . . . 5 lim |
4 | limcrcl 13421 | . . . . . 6 lim | |
5 | 4 | simp3d 1006 | . . . . 5 lim |
6 | cnex 7898 | . . . . . . 7 | |
7 | 6 | rabex 4133 | . . . . . 6 # |
8 | 7 | a1i 9 | . . . . 5 lim # |
9 | simpl 108 | . . . . . . . . . 10 | |
10 | 9 | dmeqd 4813 | . . . . . . . . . 10 |
11 | 9, 10 | feq12d 5337 | . . . . . . . . 9 |
12 | 10 | sseq1d 3176 | . . . . . . . . 9 |
13 | 11, 12 | anbi12d 470 | . . . . . . . 8 |
14 | simpr 109 | . . . . . . . . . 10 | |
15 | 14 | eleq1d 2239 | . . . . . . . . 9 |
16 | 14 | breq2d 4001 | . . . . . . . . . . . . . 14 # # |
17 | 14 | oveq2d 5869 | . . . . . . . . . . . . . . . 16 |
18 | 17 | fveq2d 5500 | . . . . . . . . . . . . . . 15 |
19 | 18 | breq1d 3999 | . . . . . . . . . . . . . 14 |
20 | 16, 19 | anbi12d 470 | . . . . . . . . . . . . 13 # # |
21 | 9 | fveq1d 5498 | . . . . . . . . . . . . . . 15 |
22 | 21 | fvoveq1d 5875 | . . . . . . . . . . . . . 14 |
23 | 22 | breq1d 3999 | . . . . . . . . . . . . 13 |
24 | 20, 23 | imbi12d 233 | . . . . . . . . . . . 12 # # |
25 | 10, 24 | raleqbidv 2677 | . . . . . . . . . . 11 # # |
26 | 25 | rexbidv 2471 | . . . . . . . . . 10 # # |
27 | 26 | ralbidv 2470 | . . . . . . . . 9 # # |
28 | 15, 27 | anbi12d 470 | . . . . . . . 8 # # |
29 | 13, 28 | anbi12d 470 | . . . . . . 7 # # |
30 | 29 | rabbidv 2719 | . . . . . 6 # # |
31 | 30, 2 | ovmpoga 5982 | . . . . 5 # lim # |
32 | 3, 5, 8, 31 | syl3anc 1233 | . . . 4 lim lim # |
33 | 1, 32 | eleqtrd 2249 | . . 3 lim # |
34 | elrabi 2883 | . . 3 # | |
35 | 33, 34 | syl 14 | . 2 lim |
36 | 35 | ssriv 3151 | 1 lim |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 wral 2448 wrex 2449 crab 2452 cvv 2730 wss 3121 class class class wbr 3989 cdm 4611 wf 5194 cfv 5198 (class class class)co 5853 cpm 6627 cc 7772 clt 7954 cmin 8090 # cap 8500 crp 9610 cabs 10961 lim climc 13417 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pm 6629 df-limced 13419 |
This theorem is referenced by: reldvg 13442 dvfvalap 13444 dvcl 13446 |
Copyright terms: Public domain | W3C validator |