Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3eqtr2d | Unicode version |
Description: A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3eqtr2d.1 | |
3eqtr2d.2 | |
3eqtr2d.3 |
Ref | Expression |
---|---|
3eqtr2d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr2d.1 | . . 3 | |
2 | 3eqtr2d.2 | . . 3 | |
3 | 1, 2 | eqtr4d 2211 | . 2 |
4 | 3eqtr2d.3 | . 2 | |
5 | 3, 4 | eqtrd 2208 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-gen 1447 ax-4 1508 ax-17 1524 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-cleq 2168 |
This theorem is referenced by: fmptapd 5699 rdgisucinc 6376 ctm 7098 mulidnq 7363 ltrnqg 7394 recexprlem1ssl 7607 recexprlem1ssu 7608 ltmprr 7616 mulcmpblnrlemg 7714 caucvgsrlemoffcau 7772 negsub 8179 neg2sub 8191 divmuleqap 8647 divneg2ap 8666 qapne 9612 seqvalcd 10429 binom2 10601 bcpasc 10714 crim 10835 remullem 10848 max0addsup 11196 summodclem2a 11357 isum1p 11468 geo2sum 11490 cvgratz 11508 efi4p 11693 tanaddap 11715 addcos 11722 cos2tsin 11727 demoivreALT 11749 omeo 11870 sqgcd 11997 eulerthlemth 12199 pythagtriplem16 12246 fldivp1 12313 pockthlem 12321 4sqlem10 12352 grpinvid2 12796 mulgaddcomlem 12875 mulgmodid 12891 ablsubsub 12929 ablsubsub4 12930 txrest 13356 limccnpcntop 13724 dvrecap 13757 cosq34lt1 13851 |
Copyright terms: Public domain | W3C validator |