| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr2d | Unicode version | ||
| Description: A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3eqtr2d.1 |
|
| 3eqtr2d.2 |
|
| 3eqtr2d.3 |
|
| Ref | Expression |
|---|---|
| 3eqtr2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr2d.1 |
. . 3
| |
| 2 | 3eqtr2d.2 |
. . 3
| |
| 3 | 1, 2 | eqtr4d 2232 |
. 2
|
| 4 | 3eqtr2d.3 |
. 2
| |
| 5 | 3, 4 | eqtrd 2229 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: fmptapd 5753 rdgisucinc 6443 ctm 7175 mulidnq 7456 ltrnqg 7487 recexprlem1ssl 7700 recexprlem1ssu 7701 ltmprr 7709 mulcmpblnrlemg 7807 caucvgsrlemoffcau 7865 negsub 8274 neg2sub 8286 divmuleqap 8744 divneg2ap 8763 qapne 9713 seqvalcd 10553 binom2 10743 bcpasc 10858 crim 11023 remullem 11036 max0addsup 11384 summodclem2a 11546 isum1p 11657 geo2sum 11679 cvgratz 11697 efi4p 11882 tanaddap 11904 addcos 11911 cos2tsin 11916 demoivreALT 11939 omeo 12063 sqgcd 12196 eulerthlemth 12400 pythagtriplem16 12448 fldivp1 12517 pockthlem 12525 4sqlem10 12556 gsumval2 13040 grpinvid2 13185 imasgrp2 13240 mulgaddcomlem 13275 mulgmodid 13291 ablsubsub 13448 ablsubsub4 13449 gsumfzsnfd 13475 opprunitd 13666 lmodfopne 13882 txrest 14512 limccnpcntop 14911 dvrecap 14949 dvply1 15001 cosq34lt1 15086 wilthlem1 15216 mersenne 15233 lgseisenlem1 15311 lgsquadlem1 15318 lgsquadlem2 15319 lgsquadlem3 15320 lgsquad2lem1 15322 2lgslem1 15332 |
| Copyright terms: Public domain | W3C validator |