| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr2d | Unicode version | ||
| Description: A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3eqtr2d.1 |
|
| 3eqtr2d.2 |
|
| 3eqtr2d.3 |
|
| Ref | Expression |
|---|---|
| 3eqtr2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr2d.1 |
. . 3
| |
| 2 | 3eqtr2d.2 |
. . 3
| |
| 3 | 1, 2 | eqtr4d 2232 |
. 2
|
| 4 | 3eqtr2d.3 |
. 2
| |
| 5 | 3, 4 | eqtrd 2229 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: fmptapd 5756 rdgisucinc 6452 ctm 7184 mulidnq 7473 ltrnqg 7504 recexprlem1ssl 7717 recexprlem1ssu 7718 ltmprr 7726 mulcmpblnrlemg 7824 caucvgsrlemoffcau 7882 negsub 8291 neg2sub 8303 divmuleqap 8761 divneg2ap 8780 qapne 9730 seqvalcd 10570 binom2 10760 bcpasc 10875 crim 11040 remullem 11053 max0addsup 11401 summodclem2a 11563 isum1p 11674 geo2sum 11696 cvgratz 11714 efi4p 11899 tanaddap 11921 addcos 11928 cos2tsin 11933 demoivreALT 11956 omeo 12080 sqgcd 12221 eulerthlemth 12425 pythagtriplem16 12473 fldivp1 12542 pockthlem 12550 4sqlem10 12581 gsumval2 13099 grpinvid2 13255 imasgrp2 13316 mulgaddcomlem 13351 mulgmodid 13367 ablsubsub 13524 ablsubsub4 13525 gsumfzsnfd 13551 opprunitd 13742 lmodfopne 13958 txrest 14596 limccnpcntop 14995 dvrecap 15033 dvply1 15085 cosq34lt1 15170 wilthlem1 15300 mersenne 15317 lgseisenlem1 15395 lgsquadlem1 15402 lgsquadlem2 15403 lgsquadlem3 15404 lgsquad2lem1 15406 2lgslem1 15416 |
| Copyright terms: Public domain | W3C validator |