ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3eqtr2d Unicode version

Theorem 3eqtr2d 2268
Description: A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.)
Hypotheses
Ref Expression
3eqtr2d.1  |-  ( ph  ->  A  =  B )
3eqtr2d.2  |-  ( ph  ->  C  =  B )
3eqtr2d.3  |-  ( ph  ->  C  =  D )
Assertion
Ref Expression
3eqtr2d  |-  ( ph  ->  A  =  D )

Proof of Theorem 3eqtr2d
StepHypRef Expression
1 3eqtr2d.1 . . 3  |-  ( ph  ->  A  =  B )
2 3eqtr2d.2 . . 3  |-  ( ph  ->  C  =  B )
31, 2eqtr4d 2265 . 2  |-  ( ph  ->  A  =  C )
4 3eqtr2d.3 . 2  |-  ( ph  ->  C  =  D )
53, 4eqtrd 2262 1  |-  ( ph  ->  A  =  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-4 1556  ax-17 1572  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-cleq 2222
This theorem is referenced by:  fmptapd  5830  rdgisucinc  6531  ctm  7276  mulidnq  7576  ltrnqg  7607  recexprlem1ssl  7820  recexprlem1ssu  7821  ltmprr  7829  mulcmpblnrlemg  7927  caucvgsrlemoffcau  7985  negsub  8394  neg2sub  8406  divmuleqap  8864  divneg2ap  8883  qapne  9834  seqvalcd  10683  binom2  10873  bcpasc  10988  cats2catd  11301  crim  11369  remullem  11382  max0addsup  11730  summodclem2a  11892  isum1p  12003  geo2sum  12025  cvgratz  12043  efi4p  12228  tanaddap  12250  addcos  12257  cos2tsin  12262  demoivreALT  12285  omeo  12409  sqgcd  12550  eulerthlemth  12754  pythagtriplem16  12802  fldivp1  12871  pockthlem  12879  4sqlem10  12910  gsumval2  13430  grpinvid2  13586  imasgrp2  13647  mulgaddcomlem  13682  mulgmodid  13698  ablsubsub  13855  ablsubsub4  13856  gsumfzsnfd  13882  opprunitd  14074  lmodfopne  14290  mpl0fi  14666  mplnegfi  14669  txrest  14950  limccnpcntop  15349  dvrecap  15387  dvply1  15439  cosq34lt1  15524  wilthlem1  15654  mersenne  15671  lgseisenlem1  15749  lgsquadlem1  15756  lgsquadlem2  15757  lgsquadlem3  15758  lgsquad2lem1  15760  2lgslem1  15770
  Copyright terms: Public domain W3C validator