| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr2d | Unicode version | ||
| Description: A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3eqtr2d.1 |
|
| 3eqtr2d.2 |
|
| 3eqtr2d.3 |
|
| Ref | Expression |
|---|---|
| 3eqtr2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr2d.1 |
. . 3
| |
| 2 | 3eqtr2d.2 |
. . 3
| |
| 3 | 1, 2 | eqtr4d 2241 |
. 2
|
| 4 | 3eqtr2d.3 |
. 2
| |
| 5 | 3, 4 | eqtrd 2238 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-17 1549 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 |
| This theorem is referenced by: fmptapd 5777 rdgisucinc 6473 ctm 7213 mulidnq 7504 ltrnqg 7535 recexprlem1ssl 7748 recexprlem1ssu 7749 ltmprr 7757 mulcmpblnrlemg 7855 caucvgsrlemoffcau 7913 negsub 8322 neg2sub 8334 divmuleqap 8792 divneg2ap 8811 qapne 9762 seqvalcd 10608 binom2 10798 bcpasc 10913 crim 11202 remullem 11215 max0addsup 11563 summodclem2a 11725 isum1p 11836 geo2sum 11858 cvgratz 11876 efi4p 12061 tanaddap 12083 addcos 12090 cos2tsin 12095 demoivreALT 12118 omeo 12242 sqgcd 12383 eulerthlemth 12587 pythagtriplem16 12635 fldivp1 12704 pockthlem 12712 4sqlem10 12743 gsumval2 13262 grpinvid2 13418 imasgrp2 13479 mulgaddcomlem 13514 mulgmodid 13530 ablsubsub 13687 ablsubsub4 13688 gsumfzsnfd 13714 opprunitd 13905 lmodfopne 14121 mpl0fi 14497 mplnegfi 14500 txrest 14781 limccnpcntop 15180 dvrecap 15218 dvply1 15270 cosq34lt1 15355 wilthlem1 15485 mersenne 15502 lgseisenlem1 15580 lgsquadlem1 15587 lgsquadlem2 15588 lgsquadlem3 15589 lgsquad2lem1 15591 2lgslem1 15601 |
| Copyright terms: Public domain | W3C validator |