| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr2d | Unicode version | ||
| Description: A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3eqtr2d.1 |
|
| 3eqtr2d.2 |
|
| 3eqtr2d.3 |
|
| Ref | Expression |
|---|---|
| 3eqtr2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr2d.1 |
. . 3
| |
| 2 | 3eqtr2d.2 |
. . 3
| |
| 3 | 1, 2 | eqtr4d 2243 |
. 2
|
| 4 | 3eqtr2d.3 |
. 2
| |
| 5 | 3, 4 | eqtrd 2240 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 |
| This theorem is referenced by: fmptapd 5798 rdgisucinc 6494 ctm 7237 mulidnq 7537 ltrnqg 7568 recexprlem1ssl 7781 recexprlem1ssu 7782 ltmprr 7790 mulcmpblnrlemg 7888 caucvgsrlemoffcau 7946 negsub 8355 neg2sub 8367 divmuleqap 8825 divneg2ap 8844 qapne 9795 seqvalcd 10643 binom2 10833 bcpasc 10948 crim 11284 remullem 11297 max0addsup 11645 summodclem2a 11807 isum1p 11918 geo2sum 11940 cvgratz 11958 efi4p 12143 tanaddap 12165 addcos 12172 cos2tsin 12177 demoivreALT 12200 omeo 12324 sqgcd 12465 eulerthlemth 12669 pythagtriplem16 12717 fldivp1 12786 pockthlem 12794 4sqlem10 12825 gsumval2 13344 grpinvid2 13500 imasgrp2 13561 mulgaddcomlem 13596 mulgmodid 13612 ablsubsub 13769 ablsubsub4 13770 gsumfzsnfd 13796 opprunitd 13987 lmodfopne 14203 mpl0fi 14579 mplnegfi 14582 txrest 14863 limccnpcntop 15262 dvrecap 15300 dvply1 15352 cosq34lt1 15437 wilthlem1 15567 mersenne 15584 lgseisenlem1 15662 lgsquadlem1 15669 lgsquadlem2 15670 lgsquadlem3 15671 lgsquad2lem1 15673 2lgslem1 15683 |
| Copyright terms: Public domain | W3C validator |