| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr2d | Unicode version | ||
| Description: A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3eqtr2d.1 |
|
| 3eqtr2d.2 |
|
| 3eqtr2d.3 |
|
| Ref | Expression |
|---|---|
| 3eqtr2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr2d.1 |
. . 3
| |
| 2 | 3eqtr2d.2 |
. . 3
| |
| 3 | 1, 2 | eqtr4d 2241 |
. 2
|
| 4 | 3eqtr2d.3 |
. 2
| |
| 5 | 3, 4 | eqtrd 2238 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-17 1549 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 |
| This theorem is referenced by: fmptapd 5775 rdgisucinc 6471 ctm 7211 mulidnq 7502 ltrnqg 7533 recexprlem1ssl 7746 recexprlem1ssu 7747 ltmprr 7755 mulcmpblnrlemg 7853 caucvgsrlemoffcau 7911 negsub 8320 neg2sub 8332 divmuleqap 8790 divneg2ap 8809 qapne 9760 seqvalcd 10606 binom2 10796 bcpasc 10911 crim 11169 remullem 11182 max0addsup 11530 summodclem2a 11692 isum1p 11803 geo2sum 11825 cvgratz 11843 efi4p 12028 tanaddap 12050 addcos 12057 cos2tsin 12062 demoivreALT 12085 omeo 12209 sqgcd 12350 eulerthlemth 12554 pythagtriplem16 12602 fldivp1 12671 pockthlem 12679 4sqlem10 12710 gsumval2 13229 grpinvid2 13385 imasgrp2 13446 mulgaddcomlem 13481 mulgmodid 13497 ablsubsub 13654 ablsubsub4 13655 gsumfzsnfd 13681 opprunitd 13872 lmodfopne 14088 mpl0fi 14464 mplnegfi 14467 txrest 14748 limccnpcntop 15147 dvrecap 15185 dvply1 15237 cosq34lt1 15322 wilthlem1 15452 mersenne 15469 lgseisenlem1 15547 lgsquadlem1 15554 lgsquadlem2 15555 lgsquadlem3 15556 lgsquad2lem1 15558 2lgslem1 15568 |
| Copyright terms: Public domain | W3C validator |