ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fmptcos GIF version

Theorem fmptcos 5730
Description: Composition of two functions expressed as mapping abstractions. (Contributed by NM, 22-May-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
fmptcof.1 (𝜑 → ∀𝑥𝐴 𝑅𝐵)
fmptcof.2 (𝜑𝐹 = (𝑥𝐴𝑅))
fmptcof.3 (𝜑𝐺 = (𝑦𝐵𝑆))
Assertion
Ref Expression
fmptcos (𝜑 → (𝐺𝐹) = (𝑥𝐴𝑅 / 𝑦𝑆))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑦,𝑅   𝑥,𝑆   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑦)   𝑅(𝑥)   𝑆(𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem fmptcos
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 fmptcof.1 . 2 (𝜑 → ∀𝑥𝐴 𝑅𝐵)
2 fmptcof.2 . 2 (𝜑𝐹 = (𝑥𝐴𝑅))
3 fmptcof.3 . . 3 (𝜑𝐺 = (𝑦𝐵𝑆))
4 nfcv 2339 . . . 4 𝑧𝑆
5 nfcsb1v 3117 . . . 4 𝑦𝑧 / 𝑦𝑆
6 csbeq1a 3093 . . . 4 (𝑦 = 𝑧𝑆 = 𝑧 / 𝑦𝑆)
74, 5, 6cbvmpt 4128 . . 3 (𝑦𝐵𝑆) = (𝑧𝐵𝑧 / 𝑦𝑆)
83, 7eqtrdi 2245 . 2 (𝜑𝐺 = (𝑧𝐵𝑧 / 𝑦𝑆))
9 csbeq1 3087 . 2 (𝑧 = 𝑅𝑧 / 𝑦𝑆 = 𝑅 / 𝑦𝑆)
101, 2, 8, 9fmptcof 5729 1 (𝜑 → (𝐺𝐹) = (𝑥𝐴𝑅 / 𝑦𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  wral 2475  csb 3084  cmpt 4094  ccom 4667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266
This theorem is referenced by:  fmpoco  6274  divcncfap  14850
  Copyright terms: Public domain W3C validator