| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fmptcos | GIF version | ||
| Description: Composition of two functions expressed as mapping abstractions. (Contributed by NM, 22-May-2006.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| fmptcof.1 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑅 ∈ 𝐵) |
| fmptcof.2 | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝑅)) |
| fmptcof.3 | ⊢ (𝜑 → 𝐺 = (𝑦 ∈ 𝐵 ↦ 𝑆)) |
| Ref | Expression |
|---|---|
| fmptcos | ⊢ (𝜑 → (𝐺 ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ ⦋𝑅 / 𝑦⦌𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmptcof.1 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑅 ∈ 𝐵) | |
| 2 | fmptcof.2 | . 2 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝑅)) | |
| 3 | fmptcof.3 | . . 3 ⊢ (𝜑 → 𝐺 = (𝑦 ∈ 𝐵 ↦ 𝑆)) | |
| 4 | nfcv 2348 | . . . 4 ⊢ Ⅎ𝑧𝑆 | |
| 5 | nfcsb1v 3126 | . . . 4 ⊢ Ⅎ𝑦⦋𝑧 / 𝑦⦌𝑆 | |
| 6 | csbeq1a 3102 | . . . 4 ⊢ (𝑦 = 𝑧 → 𝑆 = ⦋𝑧 / 𝑦⦌𝑆) | |
| 7 | 4, 5, 6 | cbvmpt 4139 | . . 3 ⊢ (𝑦 ∈ 𝐵 ↦ 𝑆) = (𝑧 ∈ 𝐵 ↦ ⦋𝑧 / 𝑦⦌𝑆) |
| 8 | 3, 7 | eqtrdi 2254 | . 2 ⊢ (𝜑 → 𝐺 = (𝑧 ∈ 𝐵 ↦ ⦋𝑧 / 𝑦⦌𝑆)) |
| 9 | csbeq1 3096 | . 2 ⊢ (𝑧 = 𝑅 → ⦋𝑧 / 𝑦⦌𝑆 = ⦋𝑅 / 𝑦⦌𝑆) | |
| 10 | 1, 2, 8, 9 | fmptcof 5747 | 1 ⊢ (𝜑 → (𝐺 ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ ⦋𝑅 / 𝑦⦌𝑆)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2176 ∀wral 2484 ⦋csb 3093 ↦ cmpt 4105 ∘ ccom 4679 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 |
| This theorem is referenced by: fmpoco 6302 divcncfap 15086 |
| Copyright terms: Public domain | W3C validator |