![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fmptcos | GIF version |
Description: Composition of two functions expressed as mapping abstractions. (Contributed by NM, 22-May-2006.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
fmptcof.1 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑅 ∈ 𝐵) |
fmptcof.2 | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝑅)) |
fmptcof.3 | ⊢ (𝜑 → 𝐺 = (𝑦 ∈ 𝐵 ↦ 𝑆)) |
Ref | Expression |
---|---|
fmptcos | ⊢ (𝜑 → (𝐺 ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ ⦋𝑅 / 𝑦⦌𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmptcof.1 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑅 ∈ 𝐵) | |
2 | fmptcof.2 | . 2 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝑅)) | |
3 | fmptcof.3 | . . 3 ⊢ (𝜑 → 𝐺 = (𝑦 ∈ 𝐵 ↦ 𝑆)) | |
4 | nfcv 2336 | . . . 4 ⊢ Ⅎ𝑧𝑆 | |
5 | nfcsb1v 3114 | . . . 4 ⊢ Ⅎ𝑦⦋𝑧 / 𝑦⦌𝑆 | |
6 | csbeq1a 3090 | . . . 4 ⊢ (𝑦 = 𝑧 → 𝑆 = ⦋𝑧 / 𝑦⦌𝑆) | |
7 | 4, 5, 6 | cbvmpt 4125 | . . 3 ⊢ (𝑦 ∈ 𝐵 ↦ 𝑆) = (𝑧 ∈ 𝐵 ↦ ⦋𝑧 / 𝑦⦌𝑆) |
8 | 3, 7 | eqtrdi 2242 | . 2 ⊢ (𝜑 → 𝐺 = (𝑧 ∈ 𝐵 ↦ ⦋𝑧 / 𝑦⦌𝑆)) |
9 | csbeq1 3084 | . 2 ⊢ (𝑧 = 𝑅 → ⦋𝑧 / 𝑦⦌𝑆 = ⦋𝑅 / 𝑦⦌𝑆) | |
10 | 1, 2, 8, 9 | fmptcof 5726 | 1 ⊢ (𝜑 → (𝐺 ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ ⦋𝑅 / 𝑦⦌𝑆)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 ∀wral 2472 ⦋csb 3081 ↦ cmpt 4091 ∘ ccom 4664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-fv 5263 |
This theorem is referenced by: fmpoco 6271 divcncfap 14793 |
Copyright terms: Public domain | W3C validator |