ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fneqeql Unicode version

Theorem fneqeql 5604
Description: Two functions are equal iff their equalizer is the whole domain. (Contributed by Stefan O'Rear, 7-Mar-2015.)
Assertion
Ref Expression
fneqeql  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G  <->  dom  ( F  i^i  G
)  =  A ) )

Proof of Theorem fneqeql
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqfnfv 5593 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
2 eqcom 2172 . . . 4  |-  ( { x  e.  A  | 
( F `  x
)  =  ( G `
 x ) }  =  A  <->  A  =  { x  e.  A  |  ( F `  x )  =  ( G `  x ) } )
3 rabid2 2646 . . . 4  |-  ( A  =  { x  e.  A  |  ( F `
 x )  =  ( G `  x
) }  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) )
42, 3bitri 183 . . 3  |-  ( { x  e.  A  | 
( F `  x
)  =  ( G `
 x ) }  =  A  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) )
51, 4bitr4di 197 . 2  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G  <->  { x  e.  A  |  ( F `  x )  =  ( G `  x ) }  =  A ) )
6 fndmin 5603 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  dom  ( F  i^i  G )  =  { x  e.  A  |  ( F `  x )  =  ( G `  x ) } )
76eqeq1d 2179 . 2  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( dom  ( F  i^i  G )  =  A  <->  { x  e.  A  |  ( F `  x )  =  ( G `  x ) }  =  A ) )
85, 7bitr4d 190 1  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G  <->  dom  ( F  i^i  G
)  =  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348   A.wral 2448   {crab 2452    i^i cin 3120   dom cdm 4611    Fn wfn 5193   ` cfv 5198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fn 5201  df-fv 5206
This theorem is referenced by:  fneqeql2  5605  fnreseql  5606
  Copyright terms: Public domain W3C validator