ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fneqeql Unicode version

Theorem fneqeql 5572
Description: Two functions are equal iff their equalizer is the whole domain. (Contributed by Stefan O'Rear, 7-Mar-2015.)
Assertion
Ref Expression
fneqeql  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G  <->  dom  ( F  i^i  G
)  =  A ) )

Proof of Theorem fneqeql
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqfnfv 5562 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
2 eqcom 2159 . . . 4  |-  ( { x  e.  A  | 
( F `  x
)  =  ( G `
 x ) }  =  A  <->  A  =  { x  e.  A  |  ( F `  x )  =  ( G `  x ) } )
3 rabid2 2633 . . . 4  |-  ( A  =  { x  e.  A  |  ( F `
 x )  =  ( G `  x
) }  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) )
42, 3bitri 183 . . 3  |-  ( { x  e.  A  | 
( F `  x
)  =  ( G `
 x ) }  =  A  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) )
51, 4bitr4di 197 . 2  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G  <->  { x  e.  A  |  ( F `  x )  =  ( G `  x ) }  =  A ) )
6 fndmin 5571 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  dom  ( F  i^i  G )  =  { x  e.  A  |  ( F `  x )  =  ( G `  x ) } )
76eqeq1d 2166 . 2  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( dom  ( F  i^i  G )  =  A  <->  { x  e.  A  |  ( F `  x )  =  ( G `  x ) }  =  A ) )
85, 7bitr4d 190 1  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G  <->  dom  ( F  i^i  G
)  =  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1335   A.wral 2435   {crab 2439    i^i cin 3101   dom cdm 4583    Fn wfn 5162   ` cfv 5167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4134  ax-pr 4168
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4252  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-iota 5132  df-fun 5169  df-fn 5170  df-fv 5175
This theorem is referenced by:  fneqeql2  5573  fnreseql  5574
  Copyright terms: Public domain W3C validator